Pedestrian Detection for UAVs Using Cascade Classifiers with Meanshift

In this paper, we propose an algorithm for pedestrian detection focusing on UAV applications. Our proposal is based on a combination of Haar-LBP features with Adaboost for the training process, and Meanshift for improving the performance of the pedestrian detector. We mount a dataset with images captured from surveillance cameras. Our dataset and algorithm are evaluated and compared with other approaches from the literature.

[1]  Cecilio Angulo,et al.  Real-Time Model-Based Video Stabilization for Microaerial Vehicles , 2015, Neural Processing Letters.

[2]  Mei-Chen Yeh,et al.  Fast Human Detection Using a Cascade of Histograms of Oriented Gradients , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[3]  P. Rudol,et al.  Human Body Detection and Geolocalization for UAV Search and Rescue Missions Using Color and Thermal Imagery , 2008, 2008 IEEE Aerospace Conference.

[4]  Bernt Schiele,et al.  Ten Years of Pedestrian Detection, What Have We Learned? , 2014, ECCV Workshops.

[5]  Cecilio Angulo,et al.  Estabilización de vídeo en micro vehículos aéreos y su aplicación en la detección de caras , 2014 .

[6]  Andreas Savvides,et al.  Tasking networked CCTV cameras and mobile phones to identify and localize multiple people , 2010, UbiComp.

[7]  Tomaso A. Poggio,et al.  A general framework for object detection , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[8]  Pietro Perona,et al.  Pedestrian detection: A benchmark , 2009, CVPR.

[9]  David Gerónimo Gómez,et al.  Survey of Pedestrian Detection for Advanced Driver Assistance Systems , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[10]  Tomaso A. Poggio,et al.  A Trainable System for Object Detection , 2000, International Journal of Computer Vision.

[11]  Anton van den Hengel,et al.  Strengthening the Effectiveness of Pedestrian Detection with Spatially Pooled Features , 2014, ECCV.

[12]  Paul A. Viola,et al.  Robust Real-Time Face Detection , 2001, International Journal of Computer Vision.

[13]  Toby P. Breckon,et al.  Real-time people and vehicle detection from UAV imagery , 2011, Electronic Imaging.

[14]  Peter G. Ifju,et al.  Vision-guided flight stability and control for micro air vehicles , 2002, IEEE/RSJ International Conference on Intelligent Robots and Systems.

[15]  Cecilio Angulo,et al.  Real-time video stabilization without phantom movements for micro aerial vehicles , 2014, EURASIP J. Image Video Process..

[16]  Ramakant Nevatia,et al.  Pedestrian Detection in Infrared Images based on Local Shape Features , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[17]  Gaurav S. Sukhatme,et al.  People tracking and following with mobile robot using an omnidirectional camera and a laser , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[18]  Clemente Ibarra-Castanedo,et al.  Advanced surveillance systems: combining video and thermal imagery for pedestrian detection , 2004, SPIE Defense + Commercial Sensing.

[19]  Toon Goedemé,et al.  On-board real-time tracking of pedestrians on a UAV , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW).

[20]  Wilbert G. Aguilar,et al.  3D Environment Mapping Using the Kinect V2 and Path Planning Based on RRT Algorithms , 2016 .

[21]  Bernt Schiele,et al.  Vision based victim detection from unmanned aerial vehicles , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[22]  Bernt Schiele,et al.  A Performance Evaluation of Single and Multi-feature People Detection , 2008, DAGM-Symposium.

[23]  Yoram Singer,et al.  Improved Boosting Algorithms Using Confidence-rated Predictions , 1998, COLT' 98.

[24]  Jae Hoon Lee,et al.  Human Tracking by a Multi-rotor Drone Using HOG Features and Linear SVM on Images Captured by a Monocular Camera , 2016 .

[25]  Paul A. Viola,et al.  Robust Real-time Object Detection , 2001 .

[26]  Rogelio Lozano,et al.  Human detection in uncluttered environments: From ground to UAV view , 2014, 2014 13th International Conference on Control Automation Robotics & Vision (ICARCV).

[27]  Cecilio Angulo Bahón,et al.  Control autónomo de cuadricópteros para seguimiento de trayectorias , 2014 .

[28]  N. Pettersson,et al.  A new pedestrian dataset for supervised learning , 2008, 2008 IEEE Intelligent Vehicles Symposium.

[29]  Paul A. Viola,et al.  Rapid object detection using a boosted cascade of simple features , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[30]  Dariu Gavrila,et al.  Monocular Pedestrian Detection: Survey and Experiments , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[31]  Cecilio Angulo,et al.  Robust video stabilization based on motion intention for low-cost micro aerial vehicles , 2014, 2014 IEEE 11th International Multi-Conference on Systems, Signals & Devices (SSD14).

[32]  Dariu Gavrila,et al.  Pedestrian Detection from a Moving Vehicle , 2000, ECCV.

[33]  Luc Van Gool,et al.  Robust Multiperson Tracking from a Mobile Platform , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[34]  Matti Pietikäinen,et al.  A Generalized Local Binary Pattern Operator for Multiresolution Gray Scale and Rotation Invariant Texture Classification , 2001, ICAPR.

[35]  Shuicheng Yan,et al.  An HOG-LBP human detector with partial occlusion handling , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[36]  Vangelis Metsis,et al.  Safety challenges in using AR.Drone to collaborate with humans in indoor environments , 2014, PETRA '14.

[37]  Bastian Leibe,et al.  Real-time RGB-D based people detection and tracking for mobile robots and head-worn cameras , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[38]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[39]  Pietro Perona,et al.  Pedestrian Detection: An Evaluation of the State of the Art , 2012, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[40]  Yizong Cheng,et al.  Mean Shift, Mode Seeking, and Clustering , 1995, IEEE Trans. Pattern Anal. Mach. Intell..

[41]  Bernt Schiele,et al.  Multi-cue onboard pedestrian detection , 2009, CVPR.

[42]  Andreas Geiger,et al.  Are we ready for autonomous driving? The KITTI vision benchmark suite , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.