Finite Element Modeling of Soft Fluidic Actuators: Overview and Recent Developments

Many soft robots are composed of soft fluidic actuators that are fabricated from silicone rubbers and use hydraulic or pneumatic actuation. The strong nonlinearities and complex geometries of soft actuators hinder the development of analytical models to describe their motion. Finite element modeling provides an effective solution to this issue and allows the user to predict performance and optimize soft actuator designs. Herein, the literature on a finite element analysis of soft actuators is reviewed. First, the required nonlinear elasticity concepts are introduced with a focus on the relevant models for soft robotics. In particular, the procedure for determining material constants for the hyperelastic models from material testing and curve fitting is explored. Then, a comprehensive review of constitutive model parameters for the most widely used silicone rubbers in the literature is provided. An overview of the procedure is provided for three commercially available software packages (Abaqus, Ansys, and COMSOL). The combination of modeling procedures, material properties, and design guidelines presented in this article can be used as a starting point for soft robotic actuator design.

[1]  Yoel Shapiro,et al.  Bi-bellows: Pneumatic bending actuator , 2011 .

[2]  Zhe Chen,et al.  Pneumatically Actuated Soft Robotic Arm for Adaptable Grasping , 2018, Acta Mechanica Solida Sinica.

[3]  Bin Liang,et al.  Design and Modeling of a Parallel-Pipe-Crawling Pneumatic Soft Robot , 2019, IEEE Access.

[4]  Ameer Hamza Khan,et al.  Sliding Mode Control With PID Sliding Surface for Active Vibration Damping of Pneumatically Actuated Soft Robots , 2020, IEEE Access.

[5]  Robert J. Wood,et al.  Untethered soft robotics , 2018 .

[6]  Jérémie Dequidt,et al.  Software toolkit for modeling, simulation, and control of soft robots , 2017, Adv. Robotics.

[7]  Maxwell Herman,et al.  The Soft Robotics Toolkit: Strategies for Overcoming Obstacles to the Wide Dissemination of Soft-Robotic Hardware , 2017, IEEE Robotics & Automation Magazine.

[8]  Wei Chen,et al.  Flexible Actuators for Soft Robotics , 2019, Adv. Intell. Syst..

[9]  Santhosh Ragan,et al.  Soft-I-Robot , 2012 .

[10]  Robert J. Wood,et al.  An integrated design and fabrication strategy for entirely soft, autonomous robots , 2016, Nature.

[11]  G. Whitesides,et al.  Pneumatic Networks for Soft Robotics that Actuate Rapidly , 2014 .

[12]  V. Bolzani,et al.  Improvement of Pro-Oxidant Capacity of Protocatechuic Acid by Esterification , 2014, PloS one.

[13]  Xuanhe Zhao,et al.  Hydraulic hydrogel actuators and robots optically and sonically camouflaged in water , 2017, Nature Communications.

[14]  M. Cecchini,et al.  Ultrastructural Characterization of the Lower Motor System in a Mouse Model of Krabbe Disease , 2016, Scientific Reports.

[15]  Oliver Brock,et al.  A novel type of compliant and underactuated robotic hand for dexterous grasping , 2016, Int. J. Robotics Res..

[16]  Farrokh Janabi-Sharifi,et al.  Catheter Kinematics for Intracardiac Navigation , 2009, IEEE Transactions on Biomedical Engineering.

[17]  Weihua Li,et al.  A Structural Optimisation Method for a Soft Pneumatic Actuator , 2018, Robotics.

[18]  Nadeem Qaiser,et al.  Soft Actuators for Soft Robotic Applications: A Review , 2020, Adv. Intell. Syst..

[19]  Kyung Hyun Choi,et al.  3D printing for soft robotics – a review , 2018, Science and technology of advanced materials.

[20]  Cecilia Laschi,et al.  Control Strategies for Soft Robotic Manipulators: A Survey. , 2018, Soft robotics.

[21]  Rong Huang,et al.  A Periodic Deformation Mechanism of a Soft Actuator for Crawling and Grasping , 2019, Advanced Materials Technologies.

[22]  J. Dai,et al.  Design and modeling of a soft robotic surface with hyperelastic material , 2018, Mechanism and Machine Theory.

[23]  Fionnuala Connolly,et al.  Automatic design of fiber-reinforced soft actuators for trajectory matching , 2016, Proceedings of the National Academy of Sciences.

[24]  Rob N. Candler,et al.  Pneumatic microfinger with balloon fins for linear motion using 3D printed molds , 2015 .

[25]  Christian Duriez,et al.  SOFA: A Multi-Model Framework for Interactive Physical Simulation , 2012 .

[26]  Robert J. Webster,et al.  Design and Kinematic Modeling of Constant Curvature Continuum Robots: A Review , 2010, Int. J. Robotics Res..

[27]  Gürsel Alici,et al.  Finite Element Modeling in the Design Process of 3D Printed Pneumatic Soft Actuators and Sensors , 2020, Robotics.

[28]  Daniela Rus,et al.  A Recipe for Soft Fluidic Elastomer Robots , 2015, Soft robotics.

[29]  Ian D. Walker,et al.  Kinematics for multisection continuum robots , 2006, IEEE Transactions on Robotics.

[30]  Massimo Totaro,et al.  Toward Perceptive Soft Robots: Progress and Challenges , 2018, Advanced science.

[31]  Zongxing Lu,et al.  Design and Finite Element Analysis of Fiber-Reinforced Soft Pneumatic Actuator , 2019, ICIRA.

[32]  A. Gent Engineering with Rubber , 2012 .

[33]  Todd A. Gisby,et al.  Multi-functional dielectric elastomer artificial muscles for soft and smart machines , 2012 .

[34]  S. Konishi,et al.  Thin flexible end-effector using pneumatic balloon actuator , 2000 .

[35]  Robert J. Wood,et al.  Modeling of Soft Fiber-Reinforced Bending Actuators , 2015, IEEE Transactions on Robotics.

[36]  Yiqing Li,et al.  Modeling and Analysis of Soft Pneumatic Actuator with Symmetrical Chambers Used for Bionic Robotic Fish. , 2020, Soft robotics.

[37]  Gerhard A. Holzapfel,et al.  Nonlinear Solid Mechanics: A Continuum Approach for Engineering Science , 2000 .

[38]  Erwan Verron,et al.  Comparison of Hyperelastic Models for Rubber-Like Materials , 2006 .

[39]  Andrew G. Glen,et al.  APPL , 2001 .

[40]  Kaspar Althoefer,et al.  Soft Fiber-Reinforced Pneumatic Actuator Design and Fabrication: Towards Robust, Soft Robotic Systems , 2019, TAROS.

[41]  Hongliang Ren,et al.  Deep Reinforcement Learning for Soft, Flexible Robots: Brief Review with Impending Challenges , 2019, Robotics.

[42]  Annika Raatz,et al.  An Overview of Novel Actuators for Soft Robotics , 2018, Actuators.

[43]  Christopher D. Rahn,et al.  Geometrically Exact Models for Soft Robotic Manipulators , 2008, IEEE Transactions on Robotics.

[44]  S. Antman Nonlinear problems of elasticity , 1994 .

[45]  Ian D. Walker,et al.  Soft robotics: Biological inspiration, state of the art, and future research , 2008 .

[46]  Thomas J. Wallin,et al.  3D printing of soft robotic systems , 2018, Nature Reviews Materials.

[47]  Filip Ilievski,et al.  Multigait soft robot , 2011, Proceedings of the National Academy of Sciences.

[48]  Teng Yong Ng,et al.  Recent Advances of the Constitutive Models of Smart Materials — Hydrogels and Shape Memory Polymers , 2020 .

[49]  Shuichiro Ogawa,et al.  Critical roles for murine Reck in the regulation of vascular patterning and stabilization , 2015, Scientific Reports.

[50]  R. Ogden Non-Linear Elastic Deformations , 1984 .

[51]  Alain Delchambre,et al.  Design, characterization and optimization of a soft fluidic actuator for minimally invasive surgery , 2019, International Journal of Computer Assisted Radiology and Surgery.

[52]  Richard M. Murray,et al.  A Mathematical Introduction to Robotic Manipulation , 1994 .

[53]  John J. Craig,et al.  Introduction to Robotics Mechanics and Control , 1986 .

[54]  Cagdas D. Onal,et al.  Adapting to Flexibility: Model Reference Adaptive Control of Soft Bending Actuators , 2017, IEEE Robotics and Automation Letters.

[55]  Daniela Rus,et al.  Design, kinematics, and control of a soft spatial fluidic elastomer manipulator , 2016, Int. J. Robotics Res..

[56]  A. Karimi,et al.  Master‟s thesis , 2011 .

[57]  Quan-Sheng Jiang,et al.  Soft Actuator Model for a Soft Robot With Variable Stiffness by Coupling Pneumatic Structure and Jamming Mechanism , 2020, IEEE Access.

[58]  P. Polygerinos,et al.  Mechanical Programming of Soft Actuators by Varying Fiber Angle , 2015 .

[59]  LuoMing,et al.  Toward Modular Soft Robotics: Proprioceptive Curvature Sensing and Sliding-Mode Control of Soft Bidirectional Bending Modules. , 2017 .

[60]  R. Cahn,et al.  Materials science and engineering , 2023, Nature.

[61]  Cecilia Laschi,et al.  Soft robotics: a bioinspired evolution in robotics. , 2013, Trends in biotechnology.

[62]  Mariangela Manti,et al.  Stiffening in Soft Robotics: A Review of the State of the Art , 2016, IEEE Robotics & Automation Magazine.

[63]  Chao-Min Cheng,et al.  Soft medical robotics: clinical and biomedical applications, challenges, and future directions , 2019, Adv. Robotics.

[64]  C. Majidi Soft‐Matter Engineering for Soft Robotics , 2018, Advanced Materials Technologies.

[65]  Stephen A. Morin,et al.  Soft Robotics: Review of Fluid‐Driven Intrinsically Soft Devices; Manufacturing, Sensing, Control, and Applications in Human‐Robot Interaction   , 2017 .

[66]  Gregory S. Chirikjian,et al.  The kinematics of hyper-redundant robot locomotion , 1995, IEEE Trans. Robotics Autom..

[67]  Michael T. Tolley,et al.  Application-Driven Design of Soft, 3-D Printed, Pneumatic Actuators With Bellows , 2019, IEEE/ASME Transactions on Mechatronics.

[68]  Carmel Majidi,et al.  Machine Learning for Soft Robotic Sensing and Control , 2020, Adv. Intell. Syst..

[69]  Lingfeng Chen,et al.  Soft Robotics: Academic Insights and Perspectives Through Bibliometric Analysis , 2018, Soft robotics.

[70]  Mariangela Manti,et al.  Towards the development of a soft manipulator as an assistive robot for personal care of elderly people , 2017 .

[71]  Hao Wang,et al.  The Design and Analysis of Pneumatic Rubber Actuator of Soft Robotic Fish , 2014, ICIRA.

[72]  Paolo Dario,et al.  Biomedical applications of soft robotics , 2018, Nature Reviews Materials.

[73]  Annika Raatz,et al.  A framework for the automated design and modelling of soft robotic systems , 2017 .

[74]  Jamie Paik,et al.  Modeling, Design, and Development of Soft Pneumatic Actuators with Finite Element Method   , 2016 .

[75]  D. Steck,et al.  Mechanical responses of Ecoflex silicone rubber: Compressible and incompressible behaviors , 2018, Journal of Applied Polymer Science.

[76]  CianchettiMatteo,et al.  Soft Robotics Technologies to Address Shortcomings in Today's Minimally Invasive Surgery: The STIFF-FLOP Approach , 2014 .

[77]  Rongqiang Liu,et al.  Design and Optimize of a Novel Segmented Soft Pneumatic Actuator , 2020, IEEE Access.

[78]  D. Reynaerts,et al.  Elastic Inflatable Actuators for Soft Robotic Applications , 2017, Advanced materials.

[79]  M Calisti,et al.  Fundamentals of soft robot locomotion , 2017, Journal of The Royal Society Interface.

[80]  M. Sitti,et al.  Soft Actuators for Small‐Scale Robotics , 2017, Advanced materials.

[81]  Chris Zhang,et al.  Steerable catheters for minimally invasive surgery: a review and future directions , 2018, Computer assisted surgery.

[82]  Francis L. Merat,et al.  Introduction to robotics: Mechanics and control , 1987, IEEE J. Robotics Autom..

[83]  Jorge Morales,et al.  Additive manufacturing of silicon based PneuNets as soft robotic actuators , 2018 .

[84]  LuNanshu,et al.  Flexible and Stretchable Electronics Paving the Way for Soft Robotics , 2014 .

[85]  G. Alici,et al.  Modeling and Experimental Evaluation of Bending Behavior of Soft Pneumatic Actuators Made of Discrete Actuation Chambers. , 2017, Soft robotics.

[86]  Daniela Rus,et al.  Autonomous Soft Robotic Fish Capable of Escape Maneuvers Using Fluidic Elastomer Actuators. , 2014, Soft robotics.

[87]  A. Kamran,et al.  Mechanical Characterization and FE Modelling of a Hyperelastic Material , 2015 .

[88]  Cagdas D. Onal,et al.  Reverse pneumatic artificial muscles (rPAMs): Modeling, integration, and control , 2018, PloS one.

[89]  Benjamin Gorissen,et al.  Theoretical and experimental analysis of pneumatic balloon microactuators , 2011 .

[90]  Robert J. Wood,et al.  Pneumatic Energy Sources for Autonomous and Wearable Soft Robotics , 2014 .

[91]  R. M. Natal Jorge,et al.  A Comparative Study of Several Material Models for Prediction of Hyperelastic Properties: Application to Silicone‐Rubber and Soft Tissues , 2006 .

[92]  Bernard Bayle,et al.  Soft Robots Manufacturing: A Review , 2018, Front. Robot. AI.

[93]  Ian D. Walker,et al.  Kinematics and the Implementation of an Elephant's Trunk Manipulator and Other Continuum Style Robots , 2003, J. Field Robotics.

[94]  Arianna Menciassi,et al.  Finite Element Analysis and Design Optimization of a Pneumatically Actuating Silicone Module for Robotic Surgery Applications , 2014 .

[95]  Daniela Rus,et al.  Autonomous undulatory serpentine locomotion utilizing body dynamics of a fluidic soft robot , 2013, Bioinspiration & biomimetics.

[96]  Dong-Woo Cho,et al.  Development of a micro-bellows actuator using micro-stereolithography technology , 2006 .

[97]  Gursel Alici,et al.  Bioinspired Three-Dimensional-Printed Helical Soft Pneumatic Actuators and Their Characterization. , 2020, Soft robotics.

[98]  George P Mylonas,et al.  Soft Robotics in Minimally Invasive Surgery , 2019, Soft robotics.

[99]  William McChesney Martin Some Observations on Monetary Matters : Address at the 29th Annual Commencement of The Stonier Graduate School of Banking, Rutgers University, New Brunswick, New Jersey , 1965 .

[100]  Ian D. Walker,et al.  Large deflection dynamics and control for planar continuum robots , 2001 .

[101]  Mats Jackson,et al.  Bending angle prediction and control of soft pneumatic actuators with embedded flex sensors: a data-driven approach , 2017 .

[102]  Tao Wang,et al.  Parameter Identification and Model-Based Nonlinear Robust Control of Fluidic Soft Bending Actuators , 2019, IEEE/ASME Transactions on Mechatronics.

[103]  Alain Delchambre,et al.  Towards flexible medical instruments: Review of flexible fluidic actuators , 2009 .

[104]  P HollandDónal,et al.  The Soft Robotics Toolkit: Shared Resources for Research and Design , 2014 .

[105]  D. Floreano,et al.  Soft Robotic Grippers , 2018, Advanced materials.

[106]  Barkawi Sahari,et al.  A review of constitutive models for rubber-like materials , 2010 .

[107]  D. Rus,et al.  Design, fabrication and control of soft robots , 2015, Nature.

[108]  Xiaobo Tan,et al.  A Novel Pneumatic Soft Snake Robot Using Traveling-Wave Locomotion in Constrained Environments , 2020, IEEE Robotics and Automation Letters.