The Kissing Problem: How to End a Gathering When Everyone Kisses Everyone Else Goodbye

This paper introduces the kissing problem: given a rectangular room with n people in it, what is the most efficient way for each pair of people to kiss each other goodbye? The room is viewed as a set of pixels that form a subset of the integer grid. At most one person can stand on a pixel at once, and people move horizontally or vertically. In order to move into a pixel in time step t, the pixel must be empty in time step t−1. The paper gives one algorithm for kissing everyone goodbye. (1) This algorithm is a 4 + o(1)-approximation algorithm in a crowded room (e.g., only one unoccupied pixel). (2) It is a 10 + o(1)-approximation algorithm for kissing in a comfortable room (e.g., at most half the pixels are empty). (3) It is a 25+o(1)-approximation for kissing in a sparse room.

[1]  Narendra Ahuja,et al.  Gross motion planning—a survey , 1992, CSUR.

[2]  Jonathan Schaeffer,et al.  Efficiently Searching the 15-Puzzle , 1994 .

[3]  Vincenzo Gervasi,et al.  Need a Fleet? Use the Force! , 2001 .

[4]  H. D. Ratliff,et al.  Order-Picking in a Rectangular Warehouse: A Solvable Case of the Traveling Salesman Problem , 1983, Oper. Res..

[5]  Patric R. J. Östergård,et al.  On sliding block puzzles , 2000 .

[6]  Nicola Santoro,et al.  Gathering of Asynchronous Oblivious Robots with Limited Visibility , 2001, STACS.

[7]  Andrzej Pelc,et al.  Deterministic Rendezvous in Graphs , 2003 .

[8]  Sartaj Sahni,et al.  Bitonic Sort on a Mesh-Connected Parallel Computer , 1979, IEEE Transactions on Computers.

[9]  Manfred K. Warmuth,et al.  NxN Puzzle and Related Relocation Problem , 1990, J. Symb. Comput..

[10]  Dariusz R. Kowalski,et al.  How to meet in anonymous network , 2006, Theor. Comput. Sci..

[11]  Wolfram Burgard,et al.  Coordination for Multi-Robot Exploration and Mapping , 2000, AAAI/IAAI.

[12]  V. Baston,et al.  Rendezvous search on a graph , 1999 .

[13]  Steve Alpern Rendezvous search on labeled networks , 2002 .

[14]  Nicola Santoro,et al.  On the computational power of oblivious robots: forming a series of geometric patterns , 2010, PODC '10.

[15]  Kikuo Fujimura,et al.  Map making by cooperating mobile robots , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[16]  Joachim Gudmundsson,et al.  A Fast Approximation Algorithm for TSP with Neighborhoods , 1999, Nord. J. Comput..

[17]  Gaurav S. Sukhatme,et al.  Spreading Out: A Local Approach to Multi-robot Coverage , 2002, DARS.

[18]  Ronald C. Arkin,et al.  Motor Schema — Based Mobile Robot Navigation , 1989, Int. J. Robotics Res..

[19]  Wolfram Burgard,et al.  Collaborative multi-robot exploration , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[20]  Tucker R. Balch,et al.  Behavior-based formation control for multirobot teams , 1998, IEEE Trans. Robotics Autom..

[21]  Nicola Santoro,et al.  Distributed coordination of a set of autonomous mobile robots , 2000, Proceedings of the IEEE Intelligent Vehicles Symposium 2000 (Cat. No.00TH8511).

[22]  Ronald L. Graham,et al.  Some NP-complete geometric problems , 1976, STOC '76.

[23]  F. Leighton,et al.  Introduction to Parallel Algorithms and Architectures: Arrays, Trees, Hypercubes , 1991 .

[24]  Tucker R. Balch,et al.  Behavior-based coordination of large-scale robot formations , 2000, Proceedings Fourth International Conference on MultiAgent Systems.

[25]  Gregory Dudek,et al.  Graph-Based Exploration using Multiple Robots , 2000, DARS.

[26]  Esther M. Arkin,et al.  Algorithms for Rapidly Dispersing Robot Swarms in Unknown Environments , 2002, WAFR.

[27]  Ryo Kurazume,et al.  Cooperative positioning with multiple robots , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[28]  Richard M. Wilson,et al.  Graph puzzles, homotopy, and the alternating group☆ , 1974 .

[29]  Jing Wang On sign-board based inter-robot communication in distributed robotic systems , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.

[30]  Nicola Santoro,et al.  Solving the Robots Gathering Problem , 2003, ICALP.

[31]  Gaurav S. Sukhatme,et al.  An Incremental Self-Deployment Algorithm for Mobile Sensor Networks , 2002, Auton. Robots.

[32]  Israel A. Wagner,et al.  Distributed covering by ant-robots using evaporating traces , 1999, IEEE Trans. Robotics Autom..

[33]  Erik D. Demaine,et al.  PSPACE-completeness of sliding-block puzzles and other problems through the nondeterministic constraint logic model of computation , 2002, Theor. Comput. Sci..

[34]  Esther M. Arkin,et al.  Approximation Algorithms for the Geometric Covering Salesman Problem , 1994, Discret. Appl. Math..

[35]  Isaac D. Scherson,et al.  Parallel Sorting in Two-Dimensional VLSI Models of Computation , 1989, IEEE Trans. Computers.

[36]  Erik D. Demaine,et al.  The Nondeterministic Constraint Logic Model of Computation: Reductions and Applications , 2002, ICALP.

[37]  Edward Hordern,et al.  Sliding Piece Puzzles , 1987 .

[38]  Masafumi Yamashita,et al.  Erratum: Distributed Anonymous Mobile Robots: Formation of Geometric Patterns , 2006, SIAM J. Comput..

[39]  Gaurav S. Sukhatme,et al.  Mobile Sensor Network Deployment using Potential Fields : A Distributed , Scalable Solution to the Area Coverage Problem , 2002 .

[40]  J. Schwartz,et al.  On the Complexity of Motion Planning for Multiple Independent Objects; PSPACE- Hardness of the "Warehouseman's Problem" , 1984 .

[41]  Manfred K. Warmuth,et al.  Finding a Shortest Solution for the N × N Extension of the 15-PUZZLE Is Intractable , 1986, AAAI.

[42]  Brian Yamauchi,et al.  Frontier-based exploration using multiple robots , 1998, AGENTS '98.