Vinnicombe metric as a closed-loop nonlinearity measure

The focal point of this paper is to develop a measure of closed-loop nonlinearity. In this work, the Vinnicombe metric and the quasi-linear parameter varying (quasi-LPV) representation of nonlinear systems are exploited for this purpose. The proposed measure can serve as a decision making tool for control engineers when deciding whether a linear or nonlinear control strategy should be employed to solve their control problems. A continuous stirred tank reactor (CSTR) simulation example is used to illustrate the proposed measure.

[1]  C. Desoer,et al.  Foundations of feedback theory for nonlinear dynamical systems , 1980 .

[2]  M. Hinich Testing for Gaussianity and Linearity of a Stationary Time Series. , 1982 .

[3]  Glenn Vinnicombe On IQCs and the /spl nu/-gap metric , 1998, Proceedings of the 37th IEEE Conference on Decision and Control (Cat. No.98CH36171).

[4]  G. Vinnicombe Uncertainty and Feedback: 8 loop-shaping and the-gap metric , 2000 .

[5]  Curvature measures for multiresponse regression models , 1995 .

[6]  Keith Glover,et al.  Robust control design using normal-ized coprime factor plant descriptions , 1989 .

[7]  Thomas S. Brinsmead,et al.  The Vinnicombe metric for nonlinear operators , 2002, IEEE Trans. Autom. Control..

[8]  Dag Tjøstheim,et al.  Nonparametric tests of linearity for time series , 1995 .

[9]  K. Glover,et al.  Robust stabilization of normalized coprime factor plant descriptions , 1990 .

[10]  Dale E. Seborg,et al.  Nonlinear Process Control , 1996 .

[11]  Jeff S. Shamma,et al.  Gain-Scheduled Missile Autopilot Design Using Linear Parameter Varying Transformations , 1993 .

[12]  Brian D. O. Anderson,et al.  Robust Stabilization of Nonlinear Systems via Normalized Coprime Factor Representations , 1998, Autom..

[13]  G. Vinnicombe Frequency domain uncertainty and the graph topology , 1993, IEEE Trans. Autom. Control..

[14]  A. Rantzer,et al.  System analysis via integral quadratic constraints , 1997, IEEE Trans. Autom. Control..

[15]  J. B. Ramsey,et al.  Tests for Specification Errors in Classical Linear Least‐Squares Regression Analysis , 1969 .

[16]  Martin Guay,et al.  Measurement of nonlinearity in chemical process control systems: The steady state map , 1995 .

[17]  B. LeBaron,et al.  A test for independence based on the correlation dimension , 1996 .

[18]  G. Vinnicombe,et al.  Gap metrics, representations, and nonlinear robust stability , 2000, Proceedings of the 39th IEEE Conference on Decision and Control (Cat. No.00CH37187).

[19]  S. A. Billings,et al.  Structure Detection and Model Validity Tests in the Identification of Nonlinear Systems , 1983 .

[20]  T. Rao,et al.  A TEST FOR LINEARITY OF STATIONARY TIME SERIES , 1980 .

[21]  Michael Nikolaou When is Nonlinear Dynamic Modeling Necessary? , 1993, 1993 American Control Conference.

[22]  T. Georgiou,et al.  Robustness analysis of nonlinear feedback systems: an input-output approach , 1997, IEEE Trans. Autom. Control..

[23]  Keith Glover,et al.  A loop-shaping design procedure using H/sub infinity / synthesis , 1992 .

[24]  Glenn Vinnicombe,et al.  A /spl nu/-gap distance for uncertain and nonlinear systems , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[25]  David W. Bacon,et al.  Measurement of Dynamic Process Nonlinearity , 1997 .

[26]  David W. Bacon,et al.  Measure of closed-loop nonlinearity and interaction for nonlinear chemical processes , 1997 .