An ε-Relaxation Method for Separable Convex Cost Network Flow Problems

We propose a new method for the solution of the single commodity, separable convex cost network flow problem. The method generalizes the $\epsilon$-relaxation method developed for linear cost problems and reduces to that method when applied to linear cost problems. We show that the method terminates with a near optimal solution, and we provide an associated complexity analysis. We also present computational results showing that the method is much faster than earlier relaxation methods, particularly for ill-conditioned problems.

[1]  Andrew V. Goldberg,et al.  Solving minimum-cost flow problems by successive approximation , 1987, STOC.

[2]  Pasumarti V. Kamesam,et al.  Multipoint methods for separable nonlinear networks , 1984 .

[3]  D. Bertsekas Distributed relaxation methods for linear network flow problems , 1986, 1986 25th IEEE Conference on Decision and Control.

[4]  R. Meyer Two-Segment Separable Programming , 1979 .

[5]  Dimitri P. Bertsekas,et al.  Parallel Shortest Path Auction Algorithms , 1994, Parallel Comput..

[6]  Paul Tseng,et al.  Relaxation methods for monotropic programming problems , 1986 .

[7]  Jose A. Ventura,et al.  Computational development of a lagrangian dual approach for quadratic networks , 1991, Networks.

[8]  Dimitri P. Bertsekas,et al.  Linear network optimization - algorithms and codes , 1991 .

[9]  David L. Jensen,et al.  On the computational behavior of a polynomial-time network flow algorithm , 1992, Math. Program..

[10]  Richard M. Karp,et al.  Theoretical Improvements in Algorithmic Efficiency for Network Flow Problems , 1972, Combinatorial Optimization.

[11]  Dimitri P. Bertsekas,et al.  Dual coordinate step methods for linear network flow problems , 1988, Math. Program..

[12]  Dimitri P. Bertsekas,et al.  A unified framework for primal-dual methods in minimum cost network flow problems , 1985, Math. Program..

[13]  Darwin Klingman,et al.  NETGEN: A Program for Generating Large Scale Capacitated Assignment, Transportation, and Minimum Cost Flow Network Problems , 1974 .

[14]  D. R. Fulkerson,et al.  Flows in Networks. , 1964 .

[15]  D. Bertsekas,et al.  Partially asynchronous, parallel algorithms for network flow and other problems , 1990 .

[16]  John N. Tsitsiklis,et al.  Parallel and distributed computation , 1989 .

[17]  Dimitri P. Bertsekas,et al.  RELAX-IV : a faster version of the RELAX code for solving minimum cost flow problems , 1994 .

[18]  D. Bertsekas,et al.  Relaxation methods for network flow problems with convex arc costs , 1987 .

[19]  D. Bertsekas,et al.  Distributed asynchronous relaxation methods for convex network flow problems , 1987 .

[20]  Paul Tseng,et al.  Relaxation Methods for Minimum Cost Ordinary and Generalized Network Flow Problems , 1988, Oper. Res..

[21]  S. Thomas McCormick,et al.  Polynomial Methods for Separable Convex Optimization in Unimodular Linear Spaces with Applications , 1997, SIAM J. Comput..

[22]  William W. Hager,et al.  Application of the dual active set algorithm to quadratic network optimization , 1993, Comput. Optim. Appl..

[23]  Dimitri P. Bertsekas,et al.  A generic auction algorithm for the minimum cost network flow problem , 1993, Comput. Optim. Appl..

[24]  Dimitri P. Bertsekas,et al.  The auction algorithm for the minimum cost network flow problem , 1989 .

[25]  丸山 徹 Convex Analysisの二,三の進展について , 1977 .

[26]  Renato DE LEONEy AN {RELAXATION ALGORITHM FOR CONVEX NETWORK FLOW PROBLEMS , 1995 .

[27]  A. Weintraub A Primal Algorithm to Solve Network Flow Problems with Convex Costs , 1974 .

[28]  Dimitri P. Bertsekas,et al.  An auction/sequential shortest path algorithm for the minimum cost network flow problem , 1992 .

[29]  Dimitri P. Bertsekas,et al.  Distributed Asynchronous Relaxation Methods for Linear Network Flow Problems , 1987 .

[30]  Andrew Vladislav Goldberg,et al.  Efficient graph algorithms for sequential and parallel computers , 1987 .

[31]  Stavros A. Zenios,et al.  On the Massively Parallel Solution of Linear Network Flow Problems , 1991, Network Flows And Matching.

[32]  Dimitri P. Bertsekas,et al.  Chapter 5 Parallel computing in network optimization , 1995 .