The Frontoparietal Attention Network of the Human Brain

The dorsal convexity of the human frontal and parietal lobes forms a network that is crucially involved in the selection of sensory contents by attention. This network comprehends cortex along the intraparietal sulcus, the inferior parietal lobe, and dorsal premotor cortex, including the frontal eye field. These regions are richly interconnected with recurrent fibers passing through the superior longitudinal fasciculus. The posterior parietal cortex has several functional characteristics—such as feature-independent coding, enhancement of activity by attention, representation of task-related signals, and access to multiple reference frames—that point to a central role of this region in the computation of a feature- and modality-independent priority map of the environment. The priority map integrates feature information elaborated in sensory cortex and top-down representations of behavioral goals and expectations originating in the dorsolateral prefrontal and premotor cortex. This review presents converging evidence from single-unit studies of the primate brain, functional neuroimaging, and investigations of neuropsychological disorders such as Bálint syndrome and spatial neglect for a decisive role of the frontoparietal attention network in the selection of relevant environmental information.

[1]  Tarun Kumar Dutta,et al.  Balint syndrome , 2014, Annals of Indian Academy of Neurology.

[2]  Stéphanie Morand,et al.  Early event‐related cortical activity originating in the frontal eye fields and inferior parietal lobe predicts the occurrence of correct and error saccades , 2011, Human brain mapping.

[3]  T. A. Kelley,et al.  Working Memory Load Modulates Distractor Competition in Primary Visual Cortex , 2010, Cerebral cortex.

[4]  J. Theeuwes Top-down and bottom-up control of visual selection. , 2010, Acta psychologica.

[5]  Armin Schnider,et al.  The Dorsal Attention Network Mediates Orienting toward Behaviorally Relevant Stimuli in Spatial Neglect , 2010, The Journal of Neuroscience.

[6]  M. Goldberg,et al.  Attention, intention, and priority in the parietal lobe. , 2010, Annual review of neuroscience.

[7]  Bruno B Averbeck,et al.  Understanding the parietal lobe syndrome from a neurophysiological and evolutionary perspective , 2010, The European journal of neuroscience.

[8]  Chris Rorden,et al.  Spatial Attention Evokes Similar Activation Patterns for Visual and Auditory Stimuli , 2010, Journal of Cognitive Neuroscience.

[9]  George R. Mangun,et al.  Anterior Intraparietal Sulcus is Sensitive to Bottom–Up Attention Driven by Stimulus Salience , 2009, Journal of Cognitive Neuroscience.

[10]  M. Husain,et al.  The functional role of the inferior parietal lobe in the dorsal and ventral stream dichotomy , 2009, Neuropsychologia.

[11]  R. Ptak,et al.  Cortical and subcortical anatomy of chronic spatial neglect following vascular damage , 2008, Behavioral and Brain Functions.

[12]  Jim M. Monti,et al.  Neural Integration of Top-Down Spatial and Feature-Based Information in Visual Search , 2008, The Journal of Neuroscience.

[13]  M. Corbetta,et al.  The Reorienting System of the Human Brain: From Environment to Theory of Mind , 2008, Neuron.

[14]  R. Ptak,et al.  A non-spatial bias favouring fixated stimuli revealed in patients with spatial neglect. , 2007, Brain : a journal of neurology.

[15]  B. Wandell,et al.  Visual Field Maps in Human Cortex , 2007, Neuron.

[16]  E. Miller,et al.  Response to Comment on "Top-Down Versus Bottom-Up Control of Attention in the Prefrontal and Posterior Parietal Cortices" , 2007, Science.

[17]  E. Macaluso,et al.  Dissociation of stimulus relevance and saliency factors during shifts of visuospatial attention. , 2007, Cerebral cortex.

[18]  Ivan N Pigarev,et al.  Neural Mechanisms of Visual Attention: How Top-Down Feedback Highlights Relevant Locations , 2007, Science.

[19]  Biyu J. He,et al.  Breakdown of Functional Connectivity in Frontoparietal Networks Underlies Behavioral Deficits in Spatial Neglect , 2007, Neuron.

[20]  J. Gottlieb From Thought to Action: The Parietal Cortex as a Bridge between Perception, Action, and Cognition , 2007, Neuron.

[21]  Jillian H. Fecteau,et al.  Salience, relevance, and firing: a priority map for target selection , 2006, Trends in Cognitive Sciences.

[22]  Jacqueline Gottlieb,et al.  LIP responses to a popout stimulus are reduced if it is overtly ignored , 2006, Nature Neuroscience.

[23]  R. Ptak,et al.  Temporal dynamics of attentional control settings in patients with spatial neglect , 2006, Brain Research.

[24]  D. Pandya,et al.  Fiber Pathways of the Brain , 2006 .

[25]  Armin Schnider,et al.  Reflexive orienting in spatial neglect is biased towards behaviourally salient stimuli. , 2006, Cerebral cortex.

[26]  R. Ptak,et al.  Dynamic modulation of visual detection by auditory cues in spatial neglect , 2005, Neuropsychologia.

[27]  Robert D McIntosh,et al.  The neurological basis of visual neglect , 2005, Current opinion in neurology.

[28]  H. Duffau,et al.  Direct Evidence for a Parietal-Frontal Pathway Subserving Spatial Awareness in Humans , 2005, Science.

[29]  D. Pandya,et al.  Segmentation of subcomponents within the superior longitudinal fascicle in humans: a quantitative, in vivo, DT-MRI study. , 2005, Cerebral cortex.

[30]  M. Corbetta,et al.  An Event-Related Functional Magnetic Resonance Imaging Study of Voluntary and Stimulus-Driven Orienting of Attention , 2005, The Journal of Neuroscience.

[31]  Radek Ptak,et al.  The Inferior Temporal Lobe Mediates Distracter-Resistant Visual Search of Patients with Spatial Neglect , 2005, Journal of Cognitive Neuroscience.

[32]  Andrew B. Leber,et al.  Coordination of Voluntary and Stimulus-Driven Attentional Control in Human Cortex , 2005, Psychological science.

[33]  R. Ptak,et al.  Visual extinction of similar and dissimilar stimuli: Evidence for level-dependent attentional competition , 2005, Cognitive neuropsychology.

[34]  M. Murray,et al.  The space of senses: impaired crossmodal interactions in a patient with Balint syndrome after bilateral parietal damage , 2004, Neuropsychologia.

[35]  Yale E Cohen,et al.  Modulation of LIP activity by predictive auditory and visual cues. , 2004, Cerebral cortex.

[36]  Chris Rorden,et al.  The anatomy of spatial neglect based on voxelwise statistical analysis: a study of 140 patients. , 2004, Cerebral cortex.

[37]  J. Reynolds,et al.  Attentional modulation of visual processing. , 2004, Annual review of neuroscience.

[38]  Jan Theeuwes,et al.  Endogenous and exogenous attention shifts are mediated by the same large-scale neural network , 2004, NeuroImage.

[39]  Jillian H. Fecteau,et al.  Neural correlates of the automatic and goal-driven biases in orienting spatial attention. , 2004, Journal of neurophysiology.

[40]  M. Carrasco,et al.  Attention alters appearance , 2004, Nature Neuroscience.

[41]  M. Goldberg,et al.  A Rapid and Precise On-Response in Posterior Parietal Cortex , 2004, The Journal of Neuroscience.

[42]  Armin Schnider,et al.  Disorganised Memory after Right Dorsolateral Prefrontal Damage , 2004, Neurocase.

[43]  J. Gallant,et al.  Goal-Related Activity in V4 during Free Viewing Visual Search Evidence for a Ventral Stream Visual Salience Map , 2003, Neuron.

[44]  F. Tomaiuolo,et al.  The anatomy of neglect without hemianopia: a key role for parietal–frontal disconnection? , 2003, Neuroreport.

[45]  C. Kennard,et al.  The anatomy of visual neglect , 2003 .

[46]  S. Treue Visual attention: the where, what, how and why of saliency , 2003, Current Opinion in Neurobiology.

[47]  M. Goldberg,et al.  Neuronal Activity in the Lateral Intraparietal Area and Spatial Attention , 2003, Science.

[48]  G. Humphreys,et al.  Seeing the action: neuropsychological evidence for action-based effects on object selection , 2003, Nature Neuroscience.

[49]  N. Valenza,et al.  Expectation-based attentional modulation of visual extinction in spatial neglect , 2002, Neuropsychologia.

[50]  K. Zilles,et al.  Crossmodal Processing of Object Features in Human Anterior Intraparietal Cortex An fMRI Study Implies Equivalencies between Humans and Monkeys , 2002, Neuron.

[51]  R. Passingham,et al.  Active maintenance in prefrontal area 46 creates distractor-resistant memory , 2002, Nature Neuroscience.

[52]  M. Corbetta,et al.  Control of goal-directed and stimulus-driven attention in the brain , 2002, Nature Reviews Neuroscience.

[53]  J. Assad,et al.  Dynamic coding of behaviourally relevant stimuli in parietal cortex , 2002, Nature.

[54]  G. Calvert Crossmodal processing in the human brain: insights from functional neuroimaging studies. , 2001, Cerebral cortex.

[55]  J. Bullier Integrated model of visual processing , 2001, Brain Research Reviews.

[56]  M. A. Steinmetz,et al.  Neuronal responses in area 7a to multiple-stimulus displays: I. neurons encode the location of the salient stimulus. , 2001, Cerebral cortex.

[57]  M. A. Steinmetz,et al.  Neuronal responses in area 7a to multiple stimulus displays: II. responses are suppressed at the cued location. , 2001, Cerebral cortex.

[58]  J. Fuster The Prefrontal Cortex—An Update Time Is of the Essence , 2001, Neuron.

[59]  N. Kanwisher,et al.  Neuroimaging of cognitive functions in human parietal cortex , 2001, Current Opinion in Neurobiology.

[60]  C. Frith,et al.  The Role of Working Memory in Visual Selective Attention , 2001, Science.

[61]  C. Koch,et al.  Computational modelling of visual attention , 2001, Nature Reviews Neuroscience.

[62]  E. Miller,et al.  An integrative theory of prefrontal cortex function. , 2001, Annual review of neuroscience.

[63]  G. Recanzone,et al.  Auditory and Visual Spatial Localization Deficits Following Bilateral Parietal Lobe Lesions in a Patient with Balint's Syndrome , 2000, Journal of Cognitive Neuroscience.

[64]  D. Simons Attentional capture and inattentional blindness , 2000, Trends in Cognitive Sciences.

[65]  A. Pouget,et al.  Relating unilateral neglect to the neural coding of space , 2000, Current Opinion in Neurobiology.

[66]  M. Corbetta,et al.  Voluntary orienting is dissociated from target detection in human posterior parietal cortex , 2000, Nature Neuroscience.

[67]  G. Mangun,et al.  The neural mechanisms of top-down attentional control , 2000, Nature Neuroscience.

[68]  Bradley R Postle,et al.  The dependence of span and delayed-response performance on prefrontal cortex , 1999, Neuropsychologia.

[69]  G Sperling,et al.  Measuring the amplification of attention. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[70]  S. Yantis,et al.  On the distinction between visual salience and stimulus-driven attentional capture. , 1999, Journal of experimental psychology. Human perception and performance.

[71]  N. P. Bichot,et al.  Effects of similarity and history on neural mechanisms of visual selection , 1999, Nature Neuroscience.

[72]  Leslie G. Ungerleider,et al.  Increased Activity in Human Visual Cortex during Directed Attention in the Absence of Visual Stimulation , 1999, Neuron.

[73]  N. J. Herrod,et al.  Redefining the functional organization of working memory processes within human lateral prefrontal cortex , 1999, The European journal of neuroscience.

[74]  J. Schall,et al.  Neural selection and control of visually guided eye movements. , 1999, Annual review of neuroscience.

[75]  M. Goldberg,et al.  Space and attention in parietal cortex. , 1999, Annual review of neuroscience.

[76]  S. Carlson,et al.  Distribution of cortical activation during visuospatial n-back tasks as revealed by functional magnetic resonance imaging. , 1998, Cerebral cortex.

[77]  E. Vogel,et al.  Sensory gain control (amplification) as a mechanism of selective attention: electrophysiological and neuroimaging evidence. , 1998, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[78]  A Treisman,et al.  Feature binding, attention and object perception. , 1998, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[79]  Richard A. Andersen,et al.  Separate body- and world-referenced representations of visual space in parietal cortex , 1998, Nature.

[80]  M. Goldberg,et al.  The representation of visual salience in monkey parietal cortex , 1998, Nature.

[81]  F. Bremmer,et al.  Spatial invariance of visual receptive fields in parietal cortex neurons , 1997, Nature.

[82]  H. Pashler The Psychology of Attention , 1997 .

[83]  J. Duncan,et al.  Competitive brain activity in visual attention , 1997, Current Opinion in Neurobiology.

[84]  S. Yantis,et al.  Visual attention: control, representation, and time course. , 1997, Annual review of psychology.

[85]  N. P. Bichot,et al.  Perceptual and motor processing stages identified in the activity of macaque frontal eye field neurons during visual search. , 1996, Journal of neurophysiology.

[86]  A. Treisman,et al.  Parietal contributions to visual feature binding: evidence from a patient with bilateral lesions , 1995, Science.

[87]  J. Wolfe,et al.  Guided Search 2.0 A revised model of visual search , 1994, Psychonomic bulletin & review.

[88]  B. Motter Neural correlates of attentive selection for color or luminance in extrastriate area V4 , 1994, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[89]  Jon Driver,et al.  Grouping reduces visual extinction: Neuropsychological evidence for weight-linkage in visual selection , 1994 .

[90]  Ian Robertson,et al.  Early rightwards orienting of attention on simple reaction time performance in patients with left-sided neglect , 1992, Neuropsychologia.

[91]  C. Colby,et al.  Heterogeneity of extrastriate visual areas and multiple parietal areas in the Macaque monkey , 1991, Neuropsychologia.

[92]  R. Rafal,et al.  Attention and Feature Integration: Illusory Conjunctions in a Patient with a Parietal Lobe Lesion , 1991 .

[93]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[94]  Lynn C. Robertson,et al.  Visual Search Performance in the Neglect Syndrome , 1989, Journal of Cognitive Neuroscience.

[95]  H. J. Muller,et al.  Reflexive and voluntary orienting of visual attention: time course of activation and resistance to interruption. , 1989, Journal of experimental psychology. Human perception and performance.

[96]  G. Ratcliff,et al.  The disengagement of covert attention and the neglect syndrome , 1988, Psychobiology.

[97]  M. Posner,et al.  How do the parietal lobes direct covert attention? , 1987, Neuropsychologia.

[98]  R. M. Siegel,et al.  Encoding of spatial location by posterior parietal neurons. , 1985, Science.

[99]  R. Desimone,et al.  Selective attention gates visual processing in the extrastriate cortex. , 1985, Science.

[100]  C. Bruce,et al.  Primate frontal eye fields. I. Single neurons discharging before saccades. , 1985, Journal of neurophysiology.

[101]  S Ullman,et al.  Shifts in selective visual attention: towards the underlying neural circuitry. , 1985, Human neurobiology.

[102]  M. Goldberg,et al.  Behavioral enhancement of visual responses in monkey cerebral cortex. II. Modulation in frontal eye fields specifically related to saccades. , 1981, Journal of neurophysiology.

[103]  D. Robinson,et al.  Behavioral enhancement of visual responses in monkey cerebral cortex. I. Modulation in posterior parietal cortex related to selective visual attention. , 1981, Journal of neurophysiology.

[104]  M. Posner,et al.  Orienting of Attention* , 1980, The Quarterly journal of experimental psychology.

[105]  R. Bálint Seelenlähmung des “Schauens”, optische Ataxie, räumliche Störung der Aufmerksamkeit. pp. 67–81 , 1909 .

[106]  R. Bálint Seelenlähmung des “Schauens”, optische Ataxie, räumliche Störung der Aufmerksamkeit. pp. 51–66 , 1909 .

[107]  C. L. M. The Psychology of Attention , 1890, Nature.

[108]  Junying Yuan,et al.  Selective gating of visual signals by microstimulation of frontal cortex , 2022 .