Revisiting Non-Malleable Secret Sharing

A threshold secret sharing scheme (with threshold t) allows a dealer to share a secret among a set of parties such that any group of t or more parties can recover the secret and no group of at most \(t-1\) parties learn any information about the secret. A non-malleable threshold secret sharing scheme, introduced in the recent work of Goyal and Kumar (STOC’18), additionally protects a threshold secret sharing scheme when its shares are subject to tampering attacks. Specifically, it guarantees that the reconstructed secret from the tampered shares is either the original secret or something that is unrelated to the original secret.

[1]  Silvio Micali,et al.  Algorithmic Tamper-Proof (ATP) Security: Theoretical Foundations for Security against Hardware Tampering , 2004, TCC.

[2]  Tal Malkin,et al.  Non-malleable Codes for Bounded Depth, Bounded Fan-In Circuits , 2016, EUROCRYPT.

[3]  Vinod Vaikuntanathan,et al.  Protecting Circuits from Leakage: the Computationally-Bounded and Noisy Cases , 2010, EUROCRYPT.

[4]  Daniel Wichs,et al.  Tamper Detection and Continuous Non-malleable Codes , 2015, TCC.

[5]  Silvio Micali,et al.  How to play ANY mental game , 1987, STOC.

[6]  Moni Naor,et al.  Small-Bias Probability Spaces: Efficient Constructions and Applications , 1993, SIAM J. Comput..

[7]  Silvio Micali,et al.  A Completeness Theorem for Protocols with Honest Majority , 1987, STOC 1987.

[8]  Yuval Ishai,et al.  Private Circuits: Securing Hardware against Probing Attacks , 2003, CRYPTO.

[9]  Vinod Vaikuntanathan,et al.  Breaking the circuit-size barrier in secret sharing , 2018, IACR Cryptol. ePrint Arch..

[10]  Li-Yang Tan,et al.  Non-Malleable Codes for Small-Depth Circuits , 2018, 2018 IEEE 59th Annual Symposium on Foundations of Computer Science (FOCS).

[11]  Shachar Lovett,et al.  Non-malleable codes from additive combinatorics , 2014, STOC.

[12]  Eshan Chattopadhyay,et al.  Non-malleable codes and extractors for small-depth circuits, and affine functions , 2017, STOC.

[13]  Pratyay Mukherjee,et al.  A Tamper and Leakage Resilient von Neumann Architecture , 2015, Public Key Cryptography.

[14]  Bhavana Kanukurthi,et al.  Four-State Non-malleable Codes with Explicit Constant Rate , 2017, Journal of Cryptology.

[15]  Manoj Prabhakaran,et al.  Explicit Non-malleable Codes Against Bit-Wise Tampering and Permutations , 2015, CRYPTO.

[16]  Daniel Wichs,et al.  Efficient Non-Malleable Codes and Key Derivation for Poly-Size Tampering Circuits , 2014, IEEE Transactions on Information Theory.

[17]  David Chaum,et al.  Multiparty Unconditionally Secure Protocols (Extended Abstract) , 1988, STOC.

[18]  Divya Gupta,et al.  Constant-rate Non-malleable Codes in the Split-state Model , 2017, IACR Cryptol. ePrint Arch..

[19]  Yair Frankel,et al.  A Practical Protocol for Large Group Oriented Networks , 1990, EUROCRYPT.

[20]  Vipul Goyal,et al.  Block-wise Non-Malleable Codes , 2016, IACR Cryptol. ePrint Arch..

[21]  David Chaum,et al.  Multiparty unconditionally secure protocols , 1988, STOC '88.

[22]  Jeanette P. Schmidt,et al.  The Spatial Complexity of Oblivious k-Probe Hash Functions , 2018, SIAM J. Comput..

[23]  Amit Sahai,et al.  Leakage-Resilient Secret Sharing , 2018, Electron. Colloquium Comput. Complex..

[24]  Noga Alon,et al.  Color-coding , 1995, JACM.

[25]  Stefan Dziembowski,et al.  Non-Malleable Codes from Two-Source Extractors , 2013, IACR Cryptol. ePrint Arch..

[26]  Suela Kodra Fuzzy extractors : How to generate strong keys from biometrics and other noisy data , 2015 .

[27]  Avi Wigderson,et al.  Completeness Theorems for Non-Cryptographic Fault-Tolerant Distributed Computation (Extended Abstract) , 1988, STOC.

[28]  Pratyay Mukherjee,et al.  Continuous Non-malleable Codes , 2014, IACR Cryptol. ePrint Arch..

[29]  Yvo Desmedt,et al.  Threshold Cryptosystems , 1989, CRYPTO.

[30]  Huaxiong Wang,et al.  Robust Additive Secret Sharing Schemes over Zm , 2001 .

[31]  Ivan Damgård,et al.  Stronger Leakage-Resilient and Non-Malleable Secret-Sharing Schemes for General Access Structures , 2019, IACR Cryptol. ePrint Arch..

[32]  Divesh Aggarwal,et al.  Optimal Computational Split-state Non-malleable Codes , 2016, TCC.

[33]  Oded Goldreich,et al.  Unbiased Bits from Sources of Weak Randomness and Probabilistic Communication Complexity , 1988, SIAM J. Comput..

[34]  Feng-Hao Liu,et al.  Tamper and Leakage Resilience in the Split-State Model , 2012, IACR Cryptol. ePrint Arch..

[35]  Guy N. Rothblum,et al.  How to Compute under ${\cal{AC}}^{\sf0}$ Leakage without Secure Hardware , 2012, CRYPTO.

[36]  Adi Shamir,et al.  How to share a secret , 1979, CACM.

[37]  Stefan Dziembowski,et al.  Non-Malleable Codes , 2018, ICS.

[38]  Aggelos Kiayias,et al.  Non-Malleable Codes for Partial Functions with Manipulation Detection , 2018, IACR Cryptol. ePrint Arch..

[39]  Yuval Ishai,et al.  On the Local Leakage Resilience of Linear Secret Sharing Schemes , 2018, Journal of Cryptology.

[40]  Thomas Johansson,et al.  On the Relation between A-Codes and Codes Correcting Independent Errors , 1994, EUROCRYPT.

[41]  Avi Wigderson,et al.  On span programs , 1993, [1993] Proceedings of the Eigth Annual Structure in Complexity Theory Conference.

[42]  Enkatesan G Uruswami Unbalanced expanders and randomness extractors from Parvaresh-Vardy codes , 2008 .

[43]  Srinivasan Raghuraman,et al.  Information-Theoretic Local Non-malleable Codes and Their Applications , 2016, TCC.

[44]  Vipul Goyal,et al.  Non-malleable extractors and codes, with their many tampered extensions , 2015, IACR Cryptol. ePrint Arch..

[45]  Baruch Awerbuch,et al.  Verifiable secret sharing and achieving simultaneity in the presence of faults , 1985, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[46]  Xin Li,et al.  Improved non-malleable extractors, non-malleable codes and independent source extractors , 2016, Electron. Colloquium Comput. Complex..

[47]  Yevgeniy Dodis,et al.  Non-malleable Reductions and Applications , 2015, Electron. Colloquium Comput. Complex..

[48]  Carles Padró,et al.  Detection of Algebraic Manipulation with Applications to Robust Secret Sharing and Fuzzy Extractors , 2008, EUROCRYPT.

[49]  Vipul Goyal,et al.  Non-malleable Secret Sharing for General Access Structures , 2018, CRYPTO.

[50]  Tal Malkin,et al.  Non-Malleable Codes from Average-Case Hardness: AC0, Decision Trees, and Streaming Space-Bounded Tampering , 2018, IACR Cryptol. ePrint Arch..

[51]  Tal Malkin,et al.  Non-malleable Codes from Average-Case Hardness: $${\mathsf {A}}{\mathsf {C}}^0$$ , Decision Trees, and Streaming Space-Bounded Tampering , 2018, EUROCRYPT.

[52]  Avi Wigderson,et al.  Completeness theorems for non-cryptographic fault-tolerant distributed computation , 1988, STOC '88.

[53]  Vipul Goyal,et al.  Non-malleable secret sharing , 2018, IACR Cryptol. ePrint Arch..

[54]  J. Komlos,et al.  On the Size of Separating Systems and Families of Perfect Hash Functions , 1984 .

[55]  G. R. BLAKLEY Safeguarding cryptographic keys , 1979, 1979 International Workshop on Managing Requirements Knowledge (MARK).

[56]  Bhavana Kanukurthi,et al.  Non-malleable Randomness Encoders and their Applications , 2018, IACR Cryptol. ePrint Arch..

[57]  Richard J. Lipton,et al.  On the Importance of Eliminating Errors in Cryptographic Computations , 2015, Journal of Cryptology.

[58]  Moti Yung,et al.  How to share a function securely , 1994, STOC '94.

[59]  Rafail Ostrovsky,et al.  Continuously Non-Malleable Codes in the Split-State Model from Minimal Assumptions , 2018, IACR Cryptol. ePrint Arch..