Effective secondary task execution of redundant manipulators

In standard pseudoinverse-based approaches to treat redundant manipulators, the vector of joint increments that corresponds to a desired motion in the space of the secondary task is projected in the Jacobian null space associated with the primary task. In general, this projection may distort the projected vector, so that the secondary task may not adequately be executed. A usual remedy is to rotate the null space projection operator by using a special-purpose weighting matrix. The problem, however, is that this rotation cannot be enforced arbitrarily since it influences the manipulator's performance. In our work we propose an algorithm that is independent on the chosen null space operator and always provides the best attainable motion in the space of the secondary task. Hence, the secondary task is executed more efficiently and the numerical procedure is more robust. A series of numerical experiments confirmed these results.

[1]  Oussama Khatib,et al.  A unified approach for motion and force control of robot manipulators: The operational space formulation , 1987, IEEE J. Robotics Autom..

[2]  C. Melchiorri,et al.  Robot manipulability , 1995, IEEE Trans. Robotics Autom..

[3]  Charles W. Wampler,et al.  On the Inverse Kinematics of Redundant Manipulators , 1988, Int. J. Robotics Res..

[4]  Oussama Khatib,et al.  The impact of redundancy on the dynamic performance of robots , 1996 .

[5]  Tsuneo Yoshikawa Basic optimization methods of redundant manipulators , 1996 .

[6]  John Baillieul,et al.  Avoiding obstacles and resolving kinematic redundancy , 1986, Proceedings. 1986 IEEE International Conference on Robotics and Automation.

[7]  B. Hu,et al.  Local optimization of weighted joint torques for redundant robotic manipulators , 1995, IEEE Trans. Robotics Autom..

[8]  Yoshihiko Nakamura,et al.  Inverse kinematic solutions with singularity robustness for robot manipulator control , 1986 .

[9]  Andrew A. Goldenberg,et al.  A Solution to the Inverse Kinematics of Redundant Manipulators , 1985, 1985 American Control Conference.

[10]  Charles A. Klein,et al.  A new formulation of the extended Jacobian method and its use in mapping algorithmic singularities for kinematically redundant manipulators , 1995, IEEE Trans. Robotics Autom..

[11]  D. Nenchev Restricted Jacobian Matrices of Redundant Manipulators in Constrained Motion Tasks , 1992 .

[12]  John M. Hollerbach,et al.  Redundancy resolution of manipulators through torque optimization , 1987, IEEE J. Robotics Autom..

[13]  Zhaoyu Wang,et al.  Global versus Local Optimization in Redundancy Resolution of Robotic Manipulators , 1988, Int. J. Robotics Res..

[14]  Oussama Khatib,et al.  A Dynamically Consistent Strategy for Manipulator Control at Singularities , 1994 .

[15]  Ashitava Ghosal,et al.  A New Approach for Kinematic Resolution of Redundancy , 1988, Int. J. Robotics Res..

[16]  M. Galicki,et al.  Optimal Planning of a Collision-free Trajectory of Redundant Manipulators , 1992 .

[17]  Jonghoon Park,et al.  Characteristics of optimal solutions in kinematic resolutions of redundancy , 1996, IEEE Trans. Robotics Autom..

[18]  A. A. Maciejewski,et al.  Obstacle Avoidance , 2005 .

[19]  T. Yoshikawa,et al.  Task-Priority Based Redundancy Control of Robot Manipulators , 1987 .

[20]  Anthony A. Maciejewski Kinetic limitations on the use of redundancy in robotic manipulators , 1991, IEEE Trans. Robotics Autom..

[21]  Dragomir N. Nenchev,et al.  Redundancy resolution through local optimization: A review , 1989, J. Field Robotics.

[22]  Charles A. Klein,et al.  Review of pseudoinverse control for use with kinematically redundant manipulators , 1983, IEEE Transactions on Systems, Man, and Cybernetics.

[23]  Ming Z. Huang,et al.  Analytic minimum-norm solution for rate coordination in redundant manipulators , 1992, J. Field Robotics.

[24]  Anthony A. Maciejewski,et al.  A parallel algorithm and architecture for the control of kinematically redundant manipulators , 1994, IEEE Trans. Robotics Autom..