Current methods for the prediction of T‐cell epitopes

T‐cell epitopes are specific peptide sequences derived from foreign or own proteins that can initiate an immune response and which are recognized by specific T‐cells when displayed on the surface of other cells. The prediction of T‐cell epitopes is of particular interest in vaccine design, disease prevention and the development of immunotherapeutics. There are two principal categories of predictive methods: peptide‐sequence based and peptide‐structure‐based. Sequence‐based methods make use of various approaches to identify likely immunogenic amino acid sequences, such as sequence motifs, decision trees, partial least squares (PLS), quantitative matrices (QM), artificial neural networks (ANN), hidden Markov models (HMM), and support vector machines (SVM). Structure‐based methods are more diverse in nature and involve approaches such as quantitative structure‐activity relationships (QSAR), molecular modelling, molecular docking and molecular dynamics simulations (MD). This review highlights the key features of all of these approaches, provides some key examples of their application, and compares and contrasts the most important methods currently in use.

[1]  P. Bradley,et al.  Quantifiable predictive features define epitope-specific T cell receptor repertoires , 2017, Nature.

[2]  Mark Gerstein,et al.  High-order neural networks and kernel methods for peptide-MHC binding prediction , 2015, Bioinform..

[3]  Bhartendu Nath Mishra,et al.  Prediction of MHC class I binding peptides using probability distribution functions , 2009, Bioinformation.

[4]  Nenad S. Mitic,et al.  Software tools for simultaneous data visualization and T cell epitopes and disorder prediction in proteins , 2016, J. Biomed. Informatics.

[5]  Jean-Philippe Vert,et al.  Efficient peptide-MHC-I binding prediction for alleles with few known binders , 2008, Bioinform..

[6]  Yingdong Zhao,et al.  Application of support vector machines for T-cell epitopes prediction , 2003, Bioinform..

[7]  Eugene N Muratov,et al.  Existing and Developing Approaches for QSAR Analysis of Mixtures , 2012, Molecular informatics.

[8]  Shinn-Ying Ho,et al.  POPISK: T-cell reactivity prediction using support vector machines and string kernels , 2011, BMC Bioinformatics.

[9]  Gajendra P.S. Raghava,et al.  Prediction of CTL epitopes using QM, SVM and ANN techniques. , 2004, Vaccine.

[10]  T. Lundstedt,et al.  Development of proteo-chemometrics: a novel technology for the analysis of drug-receptor interactions. , 2001, Biochimica et biophysica acta.

[11]  U. Hobohm,et al.  A pattern search method for putative anchor residues in T cell epitopes , 1993, European journal of immunology.

[12]  Gajendra P. S. Raghava,et al.  ProPred1: Prediction of Promiscuous MHC Class-I Binding Sites , 2003, Bioinform..

[13]  Kristin Ladell,et al.  Modification of MHC Anchor Residues Generates Heteroclitic Peptides That Alter TCR Binding and T Cell Recognition , 2010, The Journal of Immunology.

[14]  Vibha Jawa,et al.  T-cell dependent immunogenicity of protein therapeutics: Preclinical assessment and mitigation. , 2013, Clinical immunology.

[15]  Darren R Flower,et al.  Towards in silico prediction of immunogenic epitopes. , 2003, Trends in immunology.

[16]  Vladimir Brusic,et al.  Computational methods for prediction of T-cell epitopes--a framework for modelling, testing, and applications. , 2004, Methods.

[17]  David S. Goodsell,et al.  Automated docking using a Lamarckian genetic algorithm and an empirical binding free energy function , 1998 .

[18]  K. Parker,et al.  Scheme for ranking potential HLA-A2 binding peptides based on independent binding of individual peptide side-chains. , 1994, Journal of immunology.

[19]  R Abagyan,et al.  Homology modeling with internal coordinate mechanics: Deformation zone mapping and improvements of models via conformational search , 1997, Proteins.

[20]  T. Williams Human leukocyte antigen gene polymorphism and the histocompatibility laboratory. , 2001, The Journal of molecular diagnostics : JMD.

[21]  Hassan Mohabatkar,et al.  Homology Modeling and Conformational Epitope Prediction of Envelope Protein of Alkhumra Haemorrhagic Fever Virus , 2014, Journal of arthropod-borne diseases.

[22]  Jessica Holien,et al.  Improvements, trends, and new ideas in molecular docking: 2012–2013 in review , 2015, Journal of molecular recognition : JMR.

[23]  P. Coveney,et al.  Toward an atomistic understanding of the immune synapse: large-scale molecular dynamics simulation of a membrane-embedded TCR-pMHC-CD4 complex. , 2008, Molecular immunology.

[24]  Ji Wan,et al.  SVRMHC prediction server for MHC-binding peptides , 2006, BMC Bioinformatics.

[25]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[26]  Jennifer L. Johnson,et al.  Transcriptome Analysis in Domesticated Species: Challenges and Strategies , 2015, Bioinformatics and biology insights.

[27]  Irini A. Doytchinova,et al.  Towards the in silico identification of class II restricted T-cell epitopes: a partial least squares iterative self-consistent algorithm for affinity prediction , 2003, Bioinform..

[28]  O. Lund,et al.  The role of the proteasome in generating cytotoxic T-cell epitopes: insights obtained from improved predictions of proteasomal cleavage , 2005, Immunogenetics.

[29]  Sitao Wu,et al.  MUSTER: Improving protein sequence profile–profile alignments by using multiple sources of structure information , 2008, Proteins.

[30]  Morten Nielsen,et al.  NetMHCcons: a consensus method for the major histocompatibility complex class I predictions , 2011, Immunogenetics.

[31]  Oliver Kohlbacher,et al.  SVMHC: a server for prediction of MHC-binding peptides , 2006, Nucleic Acids Res..

[32]  Peter V Coveney,et al.  Molecular dynamics simulations: bring biomolecular structures alive on a computer. , 2007, Methods in molecular biology.

[33]  D. Flower,et al.  Toward the quantitative prediction of T-cell epitopes: coMFA and coMSIA studies of peptides with affinity for the class I MHC molecule HLA-A*0201. , 2001, Journal of medicinal chemistry.

[34]  A. D. De Groot,et al.  Prediction of well-conserved HIV-1 ligands using a matrix-based algorithm, EpiMatrix. , 1998, Vaccine.

[35]  S. H. van der Burg,et al.  Immunogenicity of peptides bound to MHC class I molecules depends on the MHC-peptide complex stability. , 1996, Journal of immunology.

[36]  Peter Cresswell,et al.  Pathways of antigen processing. , 2013, Annual review of immunology.

[37]  H. Margalit,et al.  Sequence features that correlate with MHC restriction. , 1994, Molecular immunology.

[38]  M. Mezei,et al.  Molecular docking: a powerful approach for structure-based drug discovery. , 2011, Current computer-aided drug design.

[39]  B. Berne,et al.  Role of the active-site solvent in the thermodynamics of factor Xa ligand binding. , 2008, Journal of the American Chemical Society.

[40]  Darren R. Flower,et al.  Towards the knowledge-based design of universal influenza epitope ensemble vaccines , 2016, Bioinform..

[41]  D. Flower,et al.  Static energy analysis of MHC class I and class II peptide-binding affinity. , 2007, Methods in molecular biology.

[42]  John Sidney,et al.  Examining the independent binding assumption for binding of peptide epitopes to MHC-I molecules , 2003, Bioinform..

[43]  Peter V Coveney,et al.  T-cell epitope prediction and immune complex simulation using molecular dynamics: state of the art and persisting challenges , 2010, Immunome research.

[44]  Adnane Achour,et al.  Major Histocompatibility Complex: Interaction with Peptides , 2001 .

[45]  David W. Corne,et al.  An Investigation of the Negative Selection Algorithm for Fault Detection in Refrigeration Systems , 2003, ICARIS.

[46]  David A. Winkler,et al.  The role of quantitative structure-activity relationships (QSAR) in biomolecular discovery , 2002, Briefings Bioinform..

[47]  Elizabeth Yuriev,et al.  Latest developments in molecular docking: 2010–2011 in review , 2013, Journal of molecular recognition : JMR.

[48]  Laxmikant V. Kalé,et al.  Scalable molecular dynamics with NAMD , 2005, J. Comput. Chem..

[49]  Sneh Lata,et al.  TAPPred prediction of TAP-binding peptides in antigens. , 2007, Methods in molecular biology.

[50]  Peicho Petkov,et al.  HLA‐DP2 binding prediction by molecular dynamics simulations , 2011, Protein science : a publication of the Protein Society.

[51]  R. Schwartz T-lymphocyte recognition of antigen in association with gene products of the major histocompatibility complex. , 1985, Annual review of immunology.

[52]  A. Sewell,et al.  Advances in T-Cell Epitope Engineering , 2013, Front. Immunol..

[53]  N. Shen,et al.  Prediction and Identification of T Cell Epitopes in the H5N1 Influenza Virus Nucleoprotein in Chicken , 2012, PloS one.

[54]  Bjoern Peters,et al.  HLA Class I Alleles Are Associated with Peptide-Binding Repertoires of Different Size, Affinity, and Immunogenicity , 2013, The Journal of Immunology.

[55]  Francisco A. Chaves,et al.  The kinetic stability of MHC class II:peptide complexes is a key parameter that dictates immunodominance. , 2005, Immunity.

[56]  K. Garcia,et al.  How a Single T Cell Receptor Recognizes Both Self and Foreign MHC , 2007, Cell.

[57]  L R Pease,et al.  Structural basis of plasticity in T cell receptor recognition of a self peptide-MHC antigen. , 1998, Science.

[58]  V. DelVecchio,et al.  Computational and Experimental Validation of B and T-Cell Epitopes of the In Vivo Immune Response to a Novel Malarial Antigen , 2013, PloS one.

[59]  António J. M. Ribeiro,et al.  Protein-ligand docking in the new millennium--a retrospective of 10 years in the field. , 2013, Current medicinal chemistry.

[60]  Byung-Jun Yoon,et al.  Hidden Markov Models and their Applications in Biological Sequence Analysis , 2009, Current genomics.

[61]  Gajendra P. S. Raghava,et al.  ProPred: prediction of HLA-DR binding sites , 2001, Bioinform..

[62]  Md. Rezaul Islam,et al.  Prediction of Epitope-Based Peptides for the Utility of Vaccine Development from Fusion and Glycoprotein of Nipah Virus Using In Silico Approach , 2014, Adv. Bioinformatics.

[63]  Morten Nielsen,et al.  Prediction of MHC class II binding affinity using SMM-align, a novel stabilization matrix alignment method , 2007, BMC Bioinformatics.

[64]  Pingping Guan,et al.  EpiJen: a server for multistep T cell epitope prediction , 2006, BMC Bioinformatics.

[65]  H. Rammensee,et al.  Discrete Cleavage Motifs of Constitutive and Immunoproteasomes Revealed by Quantitative Analysis of Cleavage Products , 2001, The Journal of experimental medicine.

[66]  Olivier Michielin,et al.  Interplay between T Cell Receptor Binding Kinetics and the Level of Cognate Peptide Presented by Major Histocompatibility Complexes Governs CD8+ T Cell Responsiveness* , 2012, The Journal of Biological Chemistry.

[67]  Morten Nielsen,et al.  Large-scale validation of methods for cytotoxic T-lymphocyte epitope prediction , 2007, BMC Bioinformatics.

[68]  Mark Walport,et al.  Antigen Presentation to T Lymphocytes , 2001 .

[69]  Hasan H. Otu,et al.  Prediction of peptides binding to MHC class I and II alleles by temporal motif mining , 2013, BMC Bioinformatics.

[70]  Z. Weng,et al.  A flexible docking approach for prediction of T cell receptor–peptide–MHC complexes , 2013, Protein science : a publication of the Protein Society.

[71]  A. Ismail,et al.  Antioxidant Capacities of Peel, Pulp, and Seed Fractions of Canarium odontophyllum Miq. Fruit , 2010, Journal of biomedicine & biotechnology.

[72]  Manuel C. Peitsch,et al.  SWISS-MODEL: an automated protein homology-modeling server , 2003, Nucleic Acids Res..

[73]  B. Maillère,et al.  3-Layer-based analysis of peptide-MHC interaction: in silico prediction, peptide binding affinity and T cell activation in a relevant allergen-specific model. , 2009, Molecular immunology.

[74]  Simon J Davis,et al.  Molecular interactions mediating T cell antigen recognition. , 2003, Annual review of immunology.

[75]  Hau-San Wong,et al.  TEPITOPEpan: Extending TEPITOPE for Peptide Binding Prediction Covering over 700 HLA-DR Molecules , 2012, PloS one.

[76]  Sneh Lata,et al.  MHCBN 4.0: A database of MHC/TAP binding peptides and T-cell epitopes , 2009, BMC Research Notes.

[77]  M. Segal,et al.  Relating Amino Acid Sequence to Phenotype: Analysis of Peptide‐Binding Data , 2000, Biometrics.

[78]  Michael J E Sternberg,et al.  The Phyre2 web portal for protein modeling, prediction and analysis , 2015, Nature Protocols.

[79]  Matthew N Davies,et al.  Harnessing bioinformatics to discover new vaccines. , 2007, Drug discovery today.

[80]  E. Sercarz,et al.  MHC-guided processing: binding of large antigen fragments , 2003, Nature Reviews Immunology.

[81]  I. Dimopoulos,et al.  Application of neural networks to modelling nonlinear relationships in ecology , 1996 .

[82]  D Rognan,et al.  Molecular dynamics simulation of MHC-peptide complexes as a tool for predicting potential T cell epitopes. , 1994, Biochemistry.

[83]  Sitao Wu,et al.  Ab Initio Protein Structure Prediction , 2009 .

[84]  Vladimir Brusic,et al.  Prediction of MHC class II-binding peptides using an evolutionary algorithm and artificial neural network , 1998, Bioinform..

[85]  Xinglong Yu,et al.  An introduction to epitope prediction methods and software , 2009, Reviews in medical virology.

[86]  Irini A. Doytchinova,et al.  EpiTOP - a proteochemometric tool for MHC class II binding prediction , 2010, Bioinform..

[87]  Miki Akamatsu,et al.  Current state and perspectives of 3D-QSAR. , 2002, Current topics in medicinal chemistry.

[88]  Tao Han,et al.  A microarray study of MPP+-treated PC12 Cells: Mechanisms of toxicity (MOT) analysis using bioinformatics tools , 2005, BMC Bioinformatics.

[89]  Lydia E. Kavraki,et al.  Protein–Ligand Interactions: Computational Docking , 2012 .

[90]  P. Roepstorff,et al.  MHC class II loading of high or low affinity peptides directed by Ii/peptide fusion constructs: implications for T cell activation. , 2003, International immunology.

[91]  M. dal Peraro,et al.  Peptide-Based Vaccinology: Experimental and Computational Approaches to Target Hypervariable Viruses through the Fine Characterization of Protective Epitopes Recognized by Monoclonal Antibodies and the Identification of T-Cell-Activating Peptides , 2013, Clinical & developmental immunology.

[92]  C. Janeway Immunobiology: The Immune System in Health and Disease , 1996 .

[93]  Richard D. Taylor,et al.  Improved protein–ligand docking using GOLD , 2003, Proteins.

[94]  Pingping Guan,et al.  MHCPred: a server for quantitative prediction of peptide-MHC binding , 2003, Nucleic Acids Res..

[95]  B. Posteraro,et al.  Human Monoclonal Antibody-Based Therapy in the Treatment of Invasive Candidiasis , 2013, Clinical & developmental immunology.

[96]  H. Margalit,et al.  Ranking potential binding peptides to MHC molecules by a computational threading approach. , 1995, Journal of molecular biology.

[97]  J. M. González,et al.  Effect of secondary anchor amino acid substitutions on the immunogenic properties of an HLA-A*0201-restricted T cell epitope derived from the Trypanosoma cruzi KMP-11 protein , 2016, Peptides.

[98]  T. Mak,et al.  CD8 is needed for development of cytotoxic T but not helper T cells , 1991, Cell.

[99]  M. A. Batalia,et al.  Peptide binding by class I and class II MHC molecules. , 1997, Biopolymers.

[100]  Irini Doytchinova,et al.  Peptide binding to HLA-DP proteins at pH 5.0 and pH 7.0: a quantitative molecular docking study , 2012, BMC Structural Biology.

[101]  Anna Goldenberg,et al.  TensorFlow: Biology's Gateway to Deep Learning? , 2016, Cell systems.

[102]  Wei Li,et al.  ElliPro: a new structure-based tool for the prediction of antibody epitopes , 2008, BMC Bioinformatics.

[103]  Darren R. Flower,et al.  Predicting Class II MHC-Peptide binding: a kernel based approach using similarity scores , 2006, BMC Bioinformatics.

[104]  Morten Nielsen,et al.  Quantitative Predictions of Peptide Binding to Any HLA-DR Molecule of Known Sequence: NetMHCIIpan , 2008, PLoS Comput. Biol..

[105]  Yanqing Niu,et al.  Accurate Prediction of Immunogenic T-Cell Epitopes from Epitope Sequences Using the Genetic Algorithm-Based Ensemble Learning , 2015, PloS one.

[106]  Miles P. Davenport,et al.  An empirical method for the prediction of T-cell epitopes , 2004, Immunogenetics.

[107]  Charles Y. Chiu,et al.  Erratum to: Clinical metagenomic identification of Balamuthia mandrillaris encephalitis and assembly of the draft genome: the continuing case for reference genome sequencing , 2016, Genome Medicine.

[108]  Alessandro Sette,et al.  Generating quantitative models describing the sequence specificity of biological processes with the stabilized matrix method , 2005, BMC Bioinformatics.

[109]  Svante Wold,et al.  Chemometrics; what do we mean with it, and what do we want from it? , 1995 .

[110]  Gregory R. Grant,et al.  Bioinformatics - The Machine Learning Approach , 2000, Comput. Chem..

[111]  Pedro A Reche,et al.  Prediction of MHC-peptide binding: a systematic and comprehensive overview. , 2009, Current pharmaceutical design.

[112]  Oliver Kohlbacher,et al.  T-cell epitope prediction based on self-tolerance , 2011, BCB '11.

[113]  Polamarasetty Aparoy,et al.  Structure and Ligand Based Drug Design Strategies in the Development of Novel 5-LOX Inhibitors , 2012, Current medicinal chemistry.

[114]  Morten Nielsen,et al.  Accurate pan-specific prediction of peptide-MHC class II binding affinity with improved binding core identification , 2015, Immunogenetics.

[115]  Gajendra P. S. Raghava,et al.  SVM based method for predicting HLA-DRB1*0401 binding peptides in an antigen sequence , 2004, Bioinform..

[116]  H Mamitsuka,et al.  Predicting peptides that bind to MHC molecules using supervised learning of hidden markov models , 1998, Proteins.

[117]  V. Engelhard,et al.  Structure of peptides associated with class I and class II MHC molecules. , 1994, Annual review of immunology.

[118]  Morten Nielsen,et al.  Peptide‐MHC class I stability is a better predictor than peptide affinity of CTL immunogenicity , 2012, European journal of immunology.

[119]  Morten Nielsen,et al.  NNAlign: A Web-Based Prediction Method Allowing Non-Expert End-User Discovery of Sequence Motifs in Quantitative Peptide Data , 2011, PloS one.

[120]  O. Lund,et al.  novel sequence representations Reliable prediction of T-cell epitopes using neural networks with , 2003 .

[121]  M. Feltkamp,et al.  Efficient MHC class I-peptide binding is required but does not ensure MHC class I-restricted immunogenicity. , 1994, Molecular immunology.

[122]  M. V. van Zelm,et al.  The activation of the adaptive immune system: cross-talk between antigen-presenting cells, T cells and B cells. , 2014, Immunology letters.

[123]  Morten Nielsen,et al.  Accurate approximation method for prediction of class I MHC affinities for peptides of length 8, 10 and 11 using prediction tools trained on 9mers , 2008, Bioinform..

[124]  Rahul Kumar,et al.  In Silico Approach for Predicting Toxicity of Peptides and Proteins , 2013, PloS one.

[125]  Irini Doytchinova,et al.  T-cell epitope vaccine design by immunoinformatics , 2013, Open Biology.

[126]  Holger Gohlke,et al.  The Amber biomolecular simulation programs , 2005, J. Comput. Chem..

[127]  E. Davidson,et al.  IMMUNOINFORMATICS: PREDICTING IMMUNOGENICITY IN SILICO , 2008 .

[128]  B. Vengamma,et al.  Computational approaches to identify common subunit vaccine candidates against bacterial meningitis , 2013, Interdisciplinary Sciences: Computational Life Sciences.

[129]  Gajendra P. S. Raghava,et al.  Pcleavage: an SVM based method for prediction of constitutive proteasome and immunoproteasome cleavage sites in antigenic sequences , 2005, Nucleic Acids Res..

[130]  Jianpeng Ma,et al.  CHARMM: The biomolecular simulation program , 2009, J. Comput. Chem..

[131]  O. Delalande,et al.  A transcriptional-switch model for Slr1738-controlled gene expression in the cyanobacterium Synechocystis , 2012, BMC Structural Biology.

[132]  Pandjassarame Kangueane,et al.  Bioinformatics: A Concept-Based Introduction , 2008 .

[133]  T. Hanai,et al.  Hidden Markov model-based prediction of antigenic peptides that interact with MHC class II molecules. , 2002, Journal of bioscience and bioengineering.

[134]  Uthaman Gowthaman,et al.  In silico tools for predicting peptides binding to HLA-class II molecules: more confusion than conclusion. , 2008, Journal of proteome research.

[135]  Ewan Birney,et al.  Hidden Markov models in biological sequence analysis , 2001, IBM J. Res. Dev..

[136]  Gajendra P.S. Raghava,et al.  A hybrid approach for predicting promiscuous MHC class I restricted T cell epitopes , 2007, Journal of Biosciences.

[137]  M. Nielsen,et al.  NetMHCpan-3.0; improved prediction of binding to MHC class I molecules integrating information from multiple receptor and peptide length datasets , 2016, Genome Medicine.

[138]  K. Hadeler,et al.  PAProC: a prediction algorithm for proteasomal cleavages available on the WWW , 2001, Immunogenetics.

[139]  Akbar Nayeem,et al.  A comparative study of available software for high‐accuracy homology modeling: From sequence alignments to structural models , 2006, Protein science : a publication of the Protein Society.

[140]  Julie McMurry,et al.  Immuno‐informatics: Mining genomes for vaccine components , 2002, Immunology and cell biology.

[141]  A. D. De Groot,et al.  T cell epitope: Friend or Foe? Immunogenicity of biologics in context☆ , 2009, Advanced Drug Delivery Reviews.

[142]  Satoru Kuhara,et al.  Use of Bonsai Decision Trees for the Identification of Potential MHC Class I Peptide Epitope Motifs , 1998, Pacific Symposium on Biocomputing.

[143]  D. Gfeller,et al.  Improving Binding Affinity and Stability of Peptide Ligands by Substituting Glycines with D‐Amino Acids , 2013, Chembiochem : a European journal of chemical biology.

[144]  Tin Wee Tan,et al.  Methods and protocols for prediction of immunogenic epitopes , 2006, Briefings Bioinform..

[145]  Jitender Verma,et al.  3D-QSAR in drug design--a review. , 2010, Current topics in medicinal chemistry.

[146]  V. Brusic,et al.  Neural network-based prediction of candidate T-cell epitopes , 1998, Nature Biotechnology.

[147]  Darren R Flower,et al.  Coupling In Silico and In Vitro Analysis of Peptide-MHC Binding: A Bioinformatic Approach Enabling Prediction of Superbinding Peptides and Anchorless Epitopes , 2004, The Journal of Immunology.

[148]  Morten Nielsen,et al.  NetTepi: an integrated method for the prediction of T cell epitopes , 2014, Immunogenetics.

[149]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[150]  H. Fabian,et al.  Increased Conformational Flexibility of HLA–B*27 Subtypes Associated With Ankylosing Spondylitis , 2015, Arthritis & rheumatology.

[151]  J. Bajorath,et al.  Docking and scoring in virtual screening for drug discovery: methods and applications , 2004, Nature Reviews Drug Discovery.

[152]  Channa K. Hattotuwagama,et al.  Toward Prediction of Class II Mouse Major Histocompatibility Complex Peptide Binding Affinity: in Silico Bioinformatic Evaluation Using Partial Least Squares, a Robust Multivariate Statistical Technique , 2006, J. Chem. Inf. Model..

[153]  D. Flower,et al.  QSAR and the Prediction of T-Cell Epitopes , 2008 .

[154]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[155]  E. Reinherz,et al.  Prediction of MHC class I binding peptides using profile motifs. , 2002, Human immunology.

[156]  H. Rammensee,et al.  SYFPEITHI: database for MHC ligands and peptide motifs , 1999, Immunogenetics.

[157]  B. Yegnanarayana,et al.  Artificial neural networks for pattern recognition , 1994 .

[158]  M. Colonna,et al.  Cutting Edge: Human Myeloid Cells Express an Activating ILT Receptor (ILT1) That Associates with Fc Receptor γ-Chain , 1999, The Journal of Immunology.

[159]  D. van der Spoel,et al.  GROMACS: A message-passing parallel molecular dynamics implementation , 1995 .

[160]  K. Kim,et al.  Selection of peptides that bind to the HLA-A2.1 molecule by molecular modelling. , 1996, Molecular immunology.

[161]  Oliver Kohlbacher,et al.  Immunoinformatics and epitope prediction in the age of genomic medicine , 2015, Genome Medicine.

[162]  Yixin Chen,et al.  A fast parallel algorithm for finding the longest common sequence of multiple biosequences , 2006, BMC Bioinformatics.

[163]  Huseyin Seker,et al.  Quantitative prediction of peptide binding affinity by using hybrid fuzzy support vector regression , 2016, Appl. Soft Comput..

[164]  S. Brunak,et al.  Predicting proteasomal cleavage sites: a comparison of available methods. , 2003, International immunology.

[165]  Ying LU,et al.  Decision tree methods: applications for classification and prediction , 2015, Shanghai archives of psychiatry.

[166]  Roland L. Dunbrack,et al.  Prediction of protein side-chain rotamers from a backbone-dependent rotamer library: a new homology modeling tool. , 1997, Journal of molecular biology.

[167]  Alessandro Sette,et al.  Properties of MHC Class I Presented Peptides That Enhance Immunogenicity , 2013, PLoS Comput. Biol..

[168]  Ravinder Singh,et al.  Fast-Find: A novel computational approach to analyzing combinatorial motifs , 2006, BMC Bioinformatics.

[169]  O. Lund,et al.  The Immune Epitope Database and Analysis Resource: From Vision to Blueprint , 2005, PLoS biology.

[170]  C. Janeway,et al.  Innate immune recognition. , 2002, Annual review of immunology.

[171]  Mikael Bodén,et al.  PREDIVAC: CD4+ T-cell epitope prediction for vaccine design that covers 95% of HLA class II DR protein diversity , 2013, BMC Bioinformatics.

[172]  Yi Zhang,et al.  Computational prediction of cleavage using proteasomal in vitro digestion and MHC I ligand data , 2013, Journal of Zhejiang University SCIENCE B.

[173]  Didier Rognan,et al.  Recovery of known T-cell epitopes by computational scanning of a viral genome , 2002, J. Comput. Aided Mol. Des..

[174]  Sneh Lata,et al.  Application of machine learning techniques in predicting MHC binders. , 2007, Methods in molecular biology.

[175]  A. Z. Maksyutov,et al.  TEpredict: Software for T-Cell epitope prediction , 2010, Molecular Biology.

[176]  Mark J. Schreiber,et al.  Decision Tree Algorithms Predict the Diagnosis and Outcome of Dengue Fever in the Early Phase of Illness , 2008, PLoS neglected tropical diseases.

[177]  Guido Scarabelli,et al.  Predicting interaction sites from the energetics of isolated proteins: a new approach to epitope mapping. , 2010, Biophysical journal.

[178]  Philip J Norris,et al.  A hairpin turn in a class II MHC-bound peptide orients residues outside the binding groove for T cell recognition. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[179]  David C. Jones,et al.  GenTHREADER: an efficient and reliable protein fold recognition method for genomic sequences. , 1999, Journal of molecular biology.

[180]  M. Nielsen,et al.  NetMHCstab – predicting stability of peptide–MHC‐I complexes; impacts for cytotoxic T lymphocyte epitope discovery , 2014, Immunology.

[181]  Morten Nielsen,et al.  Pan-specific MHC class I predictors: a benchmark of HLA class I pan-specific prediction methods , 2009, Bioinform..

[182]  S. Vajda,et al.  Anchor residues in protein-protein interactions. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[183]  Morten Nielsen,et al.  NetCTLpan: pan-specific MHC class I pathway epitope predictions , 2010, Immunogenetics.

[184]  P. Dönnes,et al.  Integrated modeling of the major events in the MHC class I antigen processing pathway , 2005, Protein science : a publication of the Protein Society.

[185]  D. Rognan,et al.  Customized versus universal scoring functions: application to class I MHC-peptide binding free energy predictions. , 2001, Bioorganic & medicinal chemistry letters.

[186]  Matthew P. Repasky,et al.  Glide: a new approach for rapid, accurate docking and scoring. 1. Method and assessment of docking accuracy. , 2004, Journal of medicinal chemistry.

[187]  J. Neefjes,et al.  Towards a systems understanding of MHC class I and MHC class II antigen presentation , 2011, Nature Reviews Immunology.

[188]  Gajendra P. S. Raghava,et al.  Analysis and prediction of antibacterial peptides , 2007, BMC Bioinformatics.

[189]  Kun Yu,et al.  Methods for Prediction of Peptide Binding to MHC Molecules: A Comparative Study , 2002, Molecular medicine.

[190]  L. Zhihua,et al.  Toward the quantitative prediction of T-cell epitopes: QSAR studies on peptides having affinity with the class I MHC molecular HLA-A*0201. , 2004, Journal of computational biology : a journal of computational molecular cell biology.

[191]  Gajendra P. S. Raghava,et al.  MHCBN: a comprehensive database of MHC binding and non-binding peptides , 2003, Bioinform..

[192]  S. Landry,et al.  Antigen structure influences helper T‐cell epitope dominance in the human immune response to HIV envelope glycoprotein gp120 , 2008, European journal of immunology.

[193]  Alex Zhavoronkov,et al.  Applications of Deep Learning in Biomedicine. , 2016, Molecular pharmaceutics.

[194]  K. Garcia,et al.  T cell receptor signaling is limited by docking geometry to peptide-major histocompatibility complex. , 2011, Immunity.

[195]  O. Schueler‐Furman,et al.  Structure‐based prediction of binding peptides to MHC class I molecules: Application to a broad range of MHC alleles , 2000, Protein science : a publication of the Protein Society.

[196]  Irini A. Doytchinova,et al.  JenPep: a database of quantitative functional peptide data for immunology , 2002, Bioinform..

[197]  Ruihong Huang,et al.  Construction of protein profile classification model and screening of proteomic signature of acute leukemia. , 2014, International journal of clinical and experimental pathology.

[198]  Hanah Margalit,et al.  A structure-based approach for prediction of MHC-binding peptides. , 2004, Methods.

[199]  Karim Benkirane,et al.  Comparison of DNA methylation profiles in human fetal and adult red blood cell progenitors , 2015, Genome Medicine.

[200]  Channa K. Hattotuwagama,et al.  MHCPred 2.0 , 2006 .

[201]  Debashis Ghosh,et al.  Peptide length-based prediction of peptide-MHC class II binding , 2006, Bioinform..

[202]  Thomas Lengauer,et al.  DynaPred: A structure and sequence based method for the prediction of MHC class I binding peptide sequences and conformations , 2006, ISMB.