VISUAL MOTION ESTIMATION AND TERRAIN MODELING FOR PLANETARY ROVERS

The next round of planetary missions will require increased autonomy to enable exploration rovers to travel great distances with limited aid from a human operator. For autonomous operations at this scale, localization and terrain modeling become key aspects of onboard rover functionality. Previous Mars rover missions have relied on odometric sensors such as wheel encoders and inertial measurement units/gyros for on-board motion estimation. While these offer a simple solution, they are prone to wheel-slip in loose soil and drift of biases, respectively. Alternatively, the use of visual landmarks observed by stereo cameras to localize a rover offers a more robust solution but at the cost of increased complexity. Additionally rovers will need to create photo-realistic three-dimensional models of visited sites for autonomous operations on-site and mission planning on Earth.

[1]  Ashitey Trebi-Ollennu,et al.  Rover localization results for the FIDO rover , 2001, SPIE Optics East.

[2]  Simon Lacroix,et al.  Position estimation in outdoor environments using pixel tracking and stereovision , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[3]  Maarten Vergauwen,et al.  A stereo-vision system for support of planetary surface exploration , 2003, Machine Vision and Applications.

[4]  Simon Lacroix,et al.  Integration of concurrent localization algorithms for a planetary rover , 2001 .

[5]  Tim D. Barfoot,et al.  Online visual motion estimation using FastSLAM with SIFT features , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[6]  James J. Little,et al.  Vision-based global localization and mapping for mobile robots , 2005, IEEE Transactions on Robotics.

[7]  Eric Huber,et al.  Inertially assisted stereo tracking for an outdoor rover , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[8]  Clark F. Olson,et al.  Maximum likelihood rover localization by matching range maps , 1998, Proceedings. 1998 IEEE International Conference on Robotics and Automation (Cat. No.98CH36146).

[9]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[10]  Sebastian Thrun,et al.  FastSLAM 2.0: an improved particle filtering algorithm for simultaneous localization and mapping that provably converges , 2003, IJCAI 2003.

[11]  T. Başar,et al.  A New Approach to Linear Filtering and Prediction Problems , 2001 .

[12]  Simon Lacroix,et al.  Autonomous Rover Navigation on Unknown Terrains: Functions and Integration , 2000, Int. J. Robotics Res..

[13]  Paul S. Schenker,et al.  Improved Rover State Estimation in Challenging Terrain , 1999, Auton. Robots.

[14]  Gerhard Roth,et al.  An Efficient Volumetric Method for Building Closed Triangular Meshes from 3-D Image and Point Data , 1997, Graphics Interface.

[15]  Brian H. Wilcox,et al.  Sojourner on Mars and Lessons Learned for Future Plantery Rovers , 1998 .

[16]  Ramin Zabih,et al.  Non-parametric Local Transforms for Computing Visual Correspondence , 1994, ECCV.

[17]  Clark F. Olson,et al.  Robust stereo ego-motion for long distance navigation , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[18]  Clark F. Olson,et al.  Rover navigation using stereo ego-motion , 2003, Robotics Auton. Syst..

[19]  Gaurav S. Sukhatme,et al.  Robust localization using relative and absolute position estimates , 1999, Proceedings 1999 IEEE/RSJ International Conference on Intelligent Robots and Systems. Human and Environment Friendly Robots with High Intelligence and Emotional Quotients (Cat. No.99CH36289).

[20]  Sebastian Thrun,et al.  FastSLAM: a factored solution to the simultaneous localization and mapping problem , 2002, AAAI/IAAI.

[21]  David G. Lowe,et al.  Indexing without Invariants in 3D Object Recognition , 1999, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  James J. Little,et al.  Mobile Robot Localization and Mapping with Uncertainty using Scale-Invariant Visual Landmarks , 2002, Int. J. Robotics Res..

[23]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[24]  S. Se,et al.  VISION BASED MODELING AND LOCALIZATION FOR PLANETARY EXPLORATION ROVERS , 2004 .

[25]  Yang Cheng,et al.  Path following using visual odometry for a Mars rover in high-slip environments , 2004, 2004 IEEE Aerospace Conference Proceedings (IEEE Cat. No.04TH8720).

[26]  Paolo Pirjanian,et al.  The vSLAM Algorithm for Robust Localization and Mapping , 2005, Proceedings of the 2005 IEEE International Conference on Robotics and Automation.

[27]  James R. Bergen,et al.  Visual odometry , 2004, Proceedings of the 2004 IEEE Computer Society Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004..