Genetic alterations and personalized medicine in melanoma: progress and future prospects.

High-throughput sequencing technologies are providing new insights into the genetic alterations involved in melanomagenesis. It appears likely that most genetic events important in the pathogenesis of melanoma will be discovered over the next few years. Genetic analysis is also increasingly being used to direct patient care. In parallel with the discovery of new genes and the elucidation of molecular pathways important in the development of melanoma, therapies targeting these pathways are becoming available. In other words, the age of personalized medicine has arrived, characterized by molecular profiling of melanoma to identify the relevant genetic alterations and the abnormal signaling mechanisms involved, followed by selection of optimal, individualized therapies. In this review, we summarize the key genetic alterations in melanoma and the development of targeted agents against melanomas bearing specific mutations. These developments in melanoma serve as a model for the implementation of personalized medicine for patients with all cancers.

[1]  D. Hoon,et al.  Epigenetic biomarkers in skin cancer. , 2014, Cancer letters.

[2]  A. D. Van den Abbeele,et al.  Imatinib for melanomas harboring mutationally activated or amplified KIT arising on mucosal, acral, and chronically sun-damaged skin. , 2013, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[3]  Joshua M. Stuart,et al.  The Cancer Genome Atlas Pan-Cancer analysis project , 2013, Nature Genetics.

[4]  C. Horak,et al.  Nivolumab plus ipilimumab in advanced melanoma. , 2013, The New England journal of medicine.

[5]  Bart Spiessens,et al.  Predictive gene signature in MAGE-A3 antigen-specific cancer immunotherapy. , 2013, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[6]  R. Kefford,et al.  Secondary c‐Kit mutations confer acquired resistance to RTK inhibitors in c‐Kit mutant melanoma cells , 2013, Pigment cell & melanoma research.

[7]  D. Schadendorf,et al.  TERT promoter mutations in ocular melanoma distinguish between conjunctival and uveal tumours , 2013, British Journal of Cancer.

[8]  N. Naus,et al.  Patient survival in uveal melanoma is not affected by oncogenic mutations in GNAQ and GNA11 , 2013, British Journal of Cancer.

[9]  Benjamin J. Raphael,et al.  Genomic and epigenomic landscapes of adult de novo acute myeloid leukemia. , 2013, The New England journal of medicine.

[10]  Joshua M. Stuart,et al.  Integrated genomic characterization of endometrial carcinoma , 2013, Nature.

[11]  D. Schadendorf,et al.  Conjunctival Melanomas Harbor BRAF and NRAS Mutations and Copy Number Changes Similar to Cutaneous and Mucosal Melanomas , 2013, Clinical Cancer Research.

[12]  Ashley M. Zehnder,et al.  IQGAP1 scaffold-kinase interaction blockade selectively targets RAS-MAP kinase–driven tumors , 2013, Nature Medicine.

[13]  M. Kretz,et al.  Abstract LB-248: BRAFV600E remodels the melanocyte transcriptome and induces BANCR to regulate melanoma cell migration. , 2013 .

[14]  L. Heinzerling,et al.  Rare BRAF mutations in melanoma patients: implications for molecular testing in clinical practice , 2013, British Journal of Cancer.

[15]  J. William Harbour,et al.  The DecisionDx-UM Gene Expression Profile Test Provides Risk Stratification and Individualized Patient Care in Uveal Melanoma , 2013, PLoS currents.

[16]  J. Wolchok,et al.  Hepatotoxicity with combination of vemurafenib and ipilimumab. , 2013, The New England journal of medicine.

[17]  D. Schadendorf,et al.  A genome-scale RNA interference screen implicates NF1 loss in resistance to RAF inhibition. , 2013, Cancer discovery.

[18]  K. Flaherty,et al.  Elucidating distinct roles for NF1 in melanomagenesis. , 2013, Cancer discovery.

[19]  K. Aldape,et al.  Frequency and spectrum of BRAF mutations in a retrospective, single-institution study of 1112 cases of melanoma. , 2013, The Journal of molecular diagnostics : JMD.

[20]  C. Berking,et al.  MEK162 for patients with advanced melanoma harbouring NRAS or Val600 BRAF mutations: a non-randomised, open-label phase 2 study. , 2013, The Lancet. Oncology.

[21]  D. Schadendorf,et al.  TERT Promoter Mutations in Familial and Sporadic Melanoma , 2013, Science.

[22]  Thomas Krausz,et al.  BAP1 and cancer , 2013, Nature Reviews Cancer.

[23]  Sarah-Jane Schramm,et al.  BRAF mutation, NRAS mutation, and the absence of an immune-related expressed gene profile predict poor outcome in patients with stage III melanoma. , 2013, The Journal of investigative dermatology.

[24]  J. Sosman,et al.  Phase II study of the MEK1/MEK2 inhibitor Trametinib in patients with metastatic BRAF-mutant cutaneous melanoma previously treated with or without a BRAF inhibitor. , 2013, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[25]  A. Weeraratna,et al.  Faculty Opinions recommendation of Tumour micro-environment elicits innate resistance to RAF inhibitors through HGF secretion. , 2012 .

[26]  R. Scolyer,et al.  Cutaneous manifestations of dabrafenib (GSK2118436): a selective inhibitor of mutant BRAF in patients with metastatic melanoma , 2012, The British journal of dermatology.

[27]  E. Nagore,et al.  Fluorescence in situ hybridization for the differential diagnosis between Spitz naevus and spitzoid melanoma , 2012, Histopathology.

[28]  K. Flaherty,et al.  Combined BRAF and MEK inhibition in melanoma with BRAF V600 mutations. , 2012, The New England journal of medicine.

[29]  V. Sondak,et al.  12-Chemokine Gene Signature Identifies Lymph Node-like Structures in Melanoma: Potential for Patient Selection for Immunotherapy? , 2012, Scientific Reports.

[30]  Ivana K. Kim,et al.  High throughput mass spectrometry-based mutation profiling of primary uveal melanoma. , 2012, Investigative ophthalmology & visual science.

[31]  Jin Hyun Cho,et al.  Nilotinib in patients with metastatic melanoma harboring KIT gene aberration , 2012, Investigational New Drugs.

[32]  J. Wilmott,et al.  Intratumoral Molecular Heterogeneity in a BRAF-Mutant, BRAF Inhibitor-Resistant Melanoma: A Case Illustrating the Challenges for Personalized Medicine , 2012, Molecular Cancer Therapeutics.

[33]  M. Birtwistle,et al.  Novel Somatic Mutations to PI3K Pathway Genes in Metastatic Melanoma , 2012, PloS one.

[34]  C. Ng,et al.  NRAS mutation status is an independent prognostic factor in metastatic melanoma , 2012, Cancer.

[35]  K. Flaherty,et al.  Activity of the oral MEK inhibitor trametinib in patients with advanced melanoma: a phase 1 dose-escalation trial. , 2012, The Lancet. Oncology.

[36]  K. Flaherty,et al.  Safety, pharmacokinetic, pharmacodynamic, and efficacy data for the oral MEK inhibitor trametinib: a phase 1 dose-escalation trial. , 2012, The Lancet. Oncology.

[37]  T. Mentzel,et al.  A Proposal for Improving Multicolor FISH Sensitivity in the Diagnosis of Malignant Melanoma Using New Combined Criteria , 2012, The American Journal of dermatopathology.

[38]  M. van Engeland,et al.  Genetics and epigenetics of cutaneous malignant melanoma: a concert out of tune. , 2012, Biochimica et biophysica acta.

[39]  A. Hauschild,et al.  Dabrafenib in BRAF-mutated metastatic melanoma: a multicentre, open-label, phase 3 randomised controlled trial , 2012, The Lancet.

[40]  A. Sivachenko,et al.  A Landscape of Driver Mutations in Melanoma , 2012, Cell.

[41]  Matthew J. Davis,et al.  Exome sequencing identifies recurrent somatic RAC1 mutations in melanoma , 2012, Nature Genetics.

[42]  Jane Fridlyand,et al.  Widespread potential for growth-factor-driven resistance to anticancer kinase inhibitors , 2012, Nature.

[43]  C. Drake,et al.  Safety and activity of anti-PD-L1 antibody in patients with advanced cancer. , 2012, The New England journal of medicine.

[44]  David C. Smith,et al.  Safety, activity, and immune correlates of anti-PD-1 antibody in cancer. , 2012, The New England journal of medicine.

[45]  L. Cerroni,et al.  A Distinct Subset of Atypical Spitz Tumors is Characterized by BRAF Mutation and Loss of BAP1 Expression , 2012, The American journal of surgical pathology.

[46]  R. Ádány,et al.  Marked genetic differences between BRAF and NRAS mutated primary melanomas as revealed by array comparative genomic hybridization , 2012, Melanoma research.

[47]  J. Guitart,et al.  A Highly Specific and Discriminatory FISH Assay for Distinguishing Between Benign and Malignant Melanocytic Neoplasms , 2012, The American journal of surgical pathology.

[48]  N. Grishin,et al.  BAP1 loss defines a new class of renal cell carcinoma , 2012, Nature Genetics.

[49]  M. Brown,et al.  Dabrafenib in patients with melanoma, untreated brain metastases, and other solid tumours: a phase 1 dose-escalation trial , 2012, The Lancet.

[50]  P. Visca,et al.  Melanoma molecular classes and prognosis in the postgenomic era. , 2012, The Lancet. Oncology.

[51]  Lauren E Haydu,et al.  Distinguishing Clinicopathologic Features of Patients with V600E and V600K BRAF-Mutant Metastatic Melanoma , 2012, Clinical Cancer Research.

[52]  D. Hazuda,et al.  HIV-1 antiretroviral drug therapy. , 2012, Cold Spring Harbor perspectives in medicine.

[53]  Trevor J Pugh,et al.  Melanoma genome sequencing reveals frequent PREX2 mutations , 2012, Nature.

[54]  P. A. Futreal,et al.  Intratumor heterogeneity and branched evolution revealed by multiregion sequencing. , 2012, The New England journal of medicine.

[55]  Yu Shyr,et al.  Survival in BRAF V600-mutant advanced melanoma treated with vemurafenib. , 2012, The New England journal of medicine.

[56]  N. Bornfeld,et al.  Prognostic significance of chromosome 3 alterations determined by microsatellite analysis in uveal melanoma: a long-term follow-up study , 2012, British Journal of Cancer.

[57]  M. Rosenblum,et al.  GNAQ and GNA11 mutations in melanocytomas of the central nervous system , 2012, Acta Neuropathologica.

[58]  Sarah-Jane Schramm,et al.  Review and cross-validation of gene expression signatures and melanoma prognosis. , 2012, The Journal of investigative dermatology.

[59]  K. Flaherty,et al.  Major response to everolimus in melanoma with acquired imatinib resistance. , 2012, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[60]  B. Bastian,et al.  Sunitinib Therapy for Melanoma Patients with KIT Mutations , 2012, Clinical Cancer Research.

[61]  D. Melton,et al.  Differential expression of microRNAs during melanoma progression: miR-200c, miR-205 and miR-211 are downregulated in melanoma and act as tumour suppressors , 2012, British Journal of Cancer.

[62]  S. Nelson,et al.  Melanoma whole exome sequencing identifies V600EB-RAF amplification-mediated acquired B-RAF inhibitor resistance , 2012, Nature Communications.

[63]  R. Sullivan,et al.  Correlation of NRAS Mutations With Clinical Response to High-dose IL-2 in Patients With Advanced Melanoma , 2012, Journal of immunotherapy.

[64]  J. Guitart,et al.  Enhanced Detection of Spitzoid Melanomas Using Fluorescence In Situ Hybridization With 9p21 as an Adjunctive Probe , 2012, The American journal of surgical pathology.

[65]  K. Brown,et al.  A novel recurrent mutation in MITF predisposes to familial and sporadic melanoma , 2011, Nature.

[66]  Tom Misteli,et al.  RAF inhibitor resistance is mediated by dimerization of aberrantly spliced BRAF(V600E) , 2011, Nature.

[67]  S. Puig,et al.  A SUMOylation-defective MITF germline mutation predisposes to melanoma and renal carcinoma , 2011, Nature.

[68]  M. Abdel-Rahman,et al.  Germline BAP1 mutation predisposes to uveal melanoma, lung adenocarcinoma, meningioma, and other cancers , 2011, Journal of Medical Genetics.

[69]  J. Becker,et al.  Germline mutations in BAP1 predispose to melanocytic tumors , 2011, Nature Genetics.

[70]  N. Cox,et al.  Germline BAP1 mutations predispose to malignant mesothelioma , 2011, Nature Genetics.

[71]  Nikhil Wagle,et al.  Dissecting therapeutic resistance to RAF inhibition in melanoma by tumor genomic profiling. , 2011, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[72]  B. Bastian,et al.  Assessment of Copy Number Status of Chromosomes 6 and 11 by FISH Provides Independent Prognostic Information in Primary Melanoma , 2011, The American journal of surgical pathology.

[73]  K. Flaherty,et al.  Phase II, open-label, single-arm trial of imatinib mesylate in patients with metastatic melanoma harboring c-Kit mutation or amplification. , 2011, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[74]  C. Roberts,et al.  SWI/SNF nucleosome remodellers and cancer , 2011, Nature Reviews Cancer.

[75]  C. Sander,et al.  The nuclear deubiquitinase BAP1 is commonly inactivated by somatic mutations and 3p21.1 losses in malignant pleural mesothelioma , 2011, Nature Genetics.

[76]  Axel Hoos,et al.  Ipilimumab plus dacarbazine for previously untreated metastatic melanoma. , 2011, The New England journal of medicine.

[77]  A. Hauschild,et al.  Improved survival with vemurafenib in melanoma with BRAF V600E mutation. , 2011, The New England journal of medicine.

[78]  C. Antonescu,et al.  KIT as a therapeutic target in metastatic melanoma. , 2011, JAMA.

[79]  Larry Norton,et al.  Clinical implications of cancer self-seeding , 2011, Nature Reviews Clinical Oncology.

[80]  M. Sznol,et al.  A phase 2 trial of dasatinib in advanced melanoma , 2011, Cancer.

[81]  S. Davis,et al.  Exome sequencing identifies GRIN2A as frequently mutated in melanoma , 2011, Nature Genetics.

[82]  L. Cerroni,et al.  Fluorescence in situ hybridization, a diagnostic aid in ambiguous melanocytic tumors: European study of 113 cases , 2011, Modern Pathology.

[83]  V. Sondak,et al.  Abstract 5370: PTEN loss confers BRAF inhibitor resistance to melanoma cells through the suppression of BIM expression , 2011 .

[84]  J. Troge,et al.  Tumour evolution inferred by single-cell sequencing , 2011, Nature.

[85]  R. Scolyer,et al.  BRAF mutations in cutaneous melanoma are independently associated with age, anatomic site of the primary tumor, and the degree of solar elastosis at the primary tumor site , 2011, Pigment cell & melanoma research.

[86]  G. Mann,et al.  Prognostic and clinicopathologic associations of oncogenic BRAF in metastatic melanoma. , 2011, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[87]  T. Gajewski Molecular profiling of melanoma and the evolution of patient-specific therapy. , 2011, Seminars in oncology.

[88]  T. Hornyak,et al.  EZH2-Dependent Suppression of a Cellular Senescence Phenotype in Melanoma Cells by Inhibition of p21/CDKN1A Expression , 2011, Molecular Cancer Research.

[89]  K. Flaherty,et al.  Large-Scale Analysis of KIT Aberrations in Chinese Patients with Melanoma , 2011, Clinical Cancer Research.

[90]  S. Nelson,et al.  Melanomas acquire resistance to B-RAF(V600E) inhibition by RTK or N-RAS upregulation , 2010, Nature.

[91]  C. Der Faculty Opinions recommendation of COT drives resistance to RAF inhibition through MAP kinase pathway reactivation. , 2010 .

[92]  Damien Kee,et al.  Acquired resistance to BRAF inhibitors mediated by a RAF kinase switch in melanoma can be overcome by cotargeting MEK and IGF-1R/PI3K. , 2010, Cancer cell.

[93]  A. Bowcock,et al.  Frequent Mutation of BAP1 in Metastasizing Uveal Melanomas , 2010, Science.

[94]  D. Schadendorf,et al.  Genetic and morphologic features for melanoma classification , 2010, Pigment cell & melanoma research.

[95]  J. O'Brien,et al.  Mutations in GNA11 in uveal melanoma. , 2010, The New England journal of medicine.

[96]  Andrew Menzies,et al.  The patterns and dynamics of genomic instability in metastatic pancreatic cancer , 2010, Nature.

[97]  M. Nowak,et al.  Distant Metastasis Occurs Late during the Genetic Evolution of Pancreatic Cancer , 2010, Nature.

[98]  Li-E. Wang,et al.  Clinical Correlates of NRAS and BRAF Mutations in Primary Human Melanoma , 2010, Clinical Cancer Research.

[99]  Kam Y. J. Zhang,et al.  Clinical efficacy of a RAF inhibitor needs broad target blockade in BRAF-mutant melanoma , 2010, Nature.

[100]  K. Flaherty,et al.  Inhibition of mutated, activated BRAF in metastatic melanoma. , 2010, The New England journal of medicine.

[101]  I. L. de la Serna,et al.  SWItching on the transcriptional circuitry in melanoma , 2010, Epigenetics.

[102]  D. Schadendorf,et al.  Somatic alterations in the melanoma genome: A high‐resolution array‐based comparative genomic hybridization study , 2010, Genes, chromosomes & cancer.

[103]  Jan Koster,et al.  NF1 Is a Tumor Suppressor in Neuroblastoma that Determines Retinoic Acid Response and Disease Outcome , 2010, Cell.

[104]  C. Allis,et al.  Covalent histone modifications — miswritten, misinterpreted and mis-erased in human cancers , 2010, Nature Reviews Cancer.

[105]  S. Whittaker,et al.  Gatekeeper Mutations Mediate Resistance to BRAF-Targeted Therapies , 2010, Science Translational Medicine.

[106]  Alexander Roesch,et al.  A Temporarily Distinct Subpopulation of Slow-Cycling Melanoma Cells Is Required for Continuous Tumor Growth , 2010, Cell.

[107]  M. Wilm,et al.  Histone H2A deubiquitinase activity of the Polycomb repressive complex PR-DUB , 2010, Nature.

[108]  M. Ringnér,et al.  Gene Expression Profiling–Based Identification of Molecular Subtypes in Stage IV Melanomas with Different Clinical Outcome , 2010, Clinical Cancer Research.

[109]  A. Dobrovic,et al.  Mutations in KIT occur at low frequency in melanomas arising from anatomical sites associated with chronic and intermittent sun exposure , 2010, Pigment cell & melanoma research.

[110]  J. Guitart,et al.  Sensitivity of fluorescence in situ hybridization for melanoma diagnosis using RREB1, MYB, Cep6, and 11q13 probes in melanoma subtypes. , 2010, Archives of dermatology.

[111]  B. Győrffy,et al.  Gene signature of the metastatic potential of cutaneous melanoma: too much for too little? , 2010, Clinical & Experimental Metastasis.

[112]  J. Borovanský,et al.  SWI/SNF chromatin remodeling complex is critical for the expression of microphthalmia-associated transcription factor in melanoma cells. , 2010, Biochemical and biophysical research communications.

[113]  Michael Krauthammer,et al.  Genome-wide methylation and expression profiling identifies promoter characteristics affecting demethylation-induced gene up-regulation in melanoma , 2010, BMC Medical Genomics.

[114]  P. Helmbold,et al.  Methylation of PTEN as a prognostic factor in malignant melanoma of the skin. , 2010, The Journal of investigative dermatology.

[115]  Derek Y. Chiang,et al.  The landscape of somatic copy-number alteration across human cancers , 2010, Nature.

[116]  Larry Norton,et al.  Tumor Self-Seeding by Circulating Cancer Cells , 2009, Cell.

[117]  G. Reifenberger,et al.  Activating mutations of the GNAQ gene: a frequent event in primary melanocytic neoplasms of the central nervous system , 2009, Acta Neuropathologica.

[118]  J. López-Guerrero,et al.  A germline mutation of p14/ARF in a melanoma kindred. , 2009, Melanoma research.

[119]  Jimmy Lin,et al.  Analysis of the tyrosine kinome in melanoma reveals recurrent mutations in ERBB4 , 2009, Nature Genetics.

[120]  G. Mills,et al.  Activity of dasatinib against L576P KIT mutant melanoma: Molecular, cellular, and clinical correlates , 2009, Molecular Cancer Therapeutics.

[121]  R. DePinho,et al.  BRafV600E cooperates with Pten silencing to elicit metastatic melanoma , 2009, Nature Genetics.

[122]  H. Itoh,et al.  Functions and Regulatory Mechanisms of Gq-Signaling Pathways , 2009, Neurosignals.

[123]  E. Simpson,et al.  Frequent somatic mutations of GNAQ in uveal melanoma and blue nevi , 2008, Nature.

[124]  Brian H. Dunford-Shore,et al.  Somatic mutations affect key pathways in lung adenocarcinoma , 2008, Nature.

[125]  D. Busam,et al.  An Integrated Genomic Analysis of Human Glioblastoma Multiforme , 2008, Science.

[126]  Joshua M. Korn,et al.  Comprehensive genomic characterization defines human glioblastoma genes and core pathways , 2008, Nature.

[127]  J. Fletcher,et al.  Heterogeneity of kinase inhibitor resistance mechanisms in GIST , 2008, The Journal of pathology.

[128]  Hong Wu,et al.  Increased cyclin D1 expression can mediate BRAF inhibitor resistance in BRAF V600E–mutated melanomas , 2008, Molecular Cancer Therapeutics.

[129]  Erwin G. Van Meir,et al.  BRCA1-associated protein-1 is a tumor suppressor that requires deubiquitinating activity and nuclear localization. , 2008, Cancer research.

[130]  M. Ross,et al.  Phase II trial of imatinib mesylate in patients with metastatic melanoma , 2008, British Journal of Cancer.

[131]  C. Gedye,et al.  Predicting Clinical Outcome through Molecular Profiling in Stage III Melanoma , 2008, Clinical Cancer Research.

[132]  B. Bastian,et al.  Dose‐dependent, complete response to imatinib of a metastatic mucosal melanoma with a K642E KIT mutation , 2008, Pigment cell & melanoma research.

[133]  T. Shioda,et al.  Elevated CRAF as a potential mechanism of acquired resistance to BRAF inhibition in melanoma. , 2008, Cancer research.

[134]  F. Sera,et al.  MC1R variants, melanoma and red hair color phenotype: A meta‐analysis , 2008, International journal of cancer.

[135]  Jane Fridlyand,et al.  Improving Melanoma Classification by Integrating Genetic and Morphologic Features , 2008, PLoS medicine.

[136]  L. Akslen,et al.  Loss of BMI-1 expression is associated with clinical progress of malignant melanoma , 2008, Modern Pathology.

[137]  A. D. Van den Abbeele,et al.  Major response to imatinib mesylate in KIT-mutated melanoma. , 2008, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[138]  Justis P. Ehlers,et al.  Integrative Genomic Analysis of Aneuploidy in Uveal Melanoma , 2008, Clinical Cancer Research.

[139]  K. Hemminki,et al.  MC1R variants associated susceptibility to basal cell carcinoma of skin: Interaction with host factors and XRCC3 polymorphism , 2007, International journal of cancer.

[140]  J. N. Newton Bishop,et al.  Genetics: what advice for patients who present with a family history of melanoma? , 2007, Seminars in oncology.

[141]  A. Sparks,et al.  The Genomic Landscapes of Human Breast and Colorectal Cancers , 2007, Science.

[142]  K. Gow,et al.  Melanoma in children and adolescents. , 2007, Surgical oncology.

[143]  D. Bennett How to make a melanoma: what do we know of the primary clonal events? , 2007, Pigment cell & melanoma research.

[144]  I. Bièche,et al.  Characterization of a germ-line deletion, including the entire INK4/ARF locus, in a melanoma-neural system tumor family: identification of ANRIL, an antisense noncoding RNA whose expression coclusters with ARF. , 2007, Cancer research.

[145]  M. Trivett,et al.  Distinct clinical and pathological features are associated with the BRAF(T1799A(V600E)) mutation in primary melanoma. , 2007, The Journal of investigative dermatology.

[146]  J. Gutkind,et al.  G-protein-coupled receptors and cancer , 2007, Nature Reviews Cancer.

[147]  J. Fletcher,et al.  Molecular correlates of imatinib resistance in gastrointestinal stromal tumors. , 2006, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[148]  D. Pinkel,et al.  Somatic activation of KIT in distinct subtypes of melanoma. , 2006, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[149]  D. Pinkel,et al.  MC1R germline variants confer risk for BRAF-mutant melanoma. , 2006, Science.

[150]  L. Chin,et al.  Malignant melanoma: genetics and therapeutics in the genomic era. , 2006, Genes & development.

[151]  S. Puig,et al.  Features associated with germline CDKN2A mutations: a GenoMEL study of melanoma-prone families from three continents , 2006, Journal of Medical Genetics.

[152]  Alessandra Marini,et al.  Epigenetic silencing of the PTEN gene in melanoma. , 2006, Cancer research.

[153]  M. Atkins,et al.  Multicenter Phase II trial of high‐dose imatinib mesylate in metastatic melanoma , 2006, Cancer.

[154]  A. Eggermont,et al.  Gene expression profiling of primary cutaneous melanoma and clinical outcome. , 2006, Journal of the National Cancer Institute.

[155]  L. Cannon-Albright,et al.  Population-based prevalence of CDKN2A mutations in Utah melanoma families. , 2006, The Journal of investigative dermatology.

[156]  J. Hepler,et al.  Cell signalling diversity of the Gqα family of heterotrimeric G proteins , 2006 .

[157]  J. Fridlyand,et al.  Distinct sets of genetic alterations in melanoma. , 2005, The New England journal of medicine.

[158]  J. A. Bishop,et al.  A mutation hotspot at the p14ARF splice site , 2005, Oncogene.

[159]  C. Johannessen,et al.  The NF1 tumor suppressor critically regulates TSC2 and mTOR. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[160]  C. Antonescu,et al.  Acquired Resistance to Imatinib in Gastrointestinal Stromal Tumor Occurs Through Secondary Gene Mutation , 2005, Clinical Cancer Research.

[161]  D. Schadendorf,et al.  Lack of clinical efficacy of imatinib in metastatic melanoma , 2005, British Journal of Cancer.

[162]  D. Gutmann,et al.  Proteomic analysis reveals hyperactivation of the mammalian target of rapamycin pathway in neurofibromatosis 1-associated human and mouse brain tumors. , 2005, Cancer research.

[163]  M. Cronin,et al.  A multigene assay to predict recurrence of tamoxifen-treated, node-negative breast cancer. , 2004, The New England journal of medicine.

[164]  Richard Marais,et al.  The RAF proteins take centre stage , 2004, Nature Reviews Molecular Cell Biology.

[165]  Justis P. Ehlers,et al.  Gene Expression Profiling in Uveal Melanoma Reveals Two Molecular Classes and Predicts Metastatic Death , 2004, Cancer Research.

[166]  Wei Zhang,et al.  A Missense Mutation in KIT Kinase Domain 1 Correlates with Imatinib Resistance in Gastrointestinal Stromal Tumors , 2004, Cancer Research.

[167]  L. Kanter,et al.  NRAS and BRAF mutations arise early during melanoma pathogenesis and are preserved throughout tumor progression. , 2003, Clinical cancer research : an official journal of the American Association for Cancer Research.

[168]  K. Jöckel,et al.  Tumor classification based on gene expression profiling shows that uveal melanomas with and without monosomy 3 represent two distinct entities. , 2003, Cancer research.

[169]  A. Nicholson,et al.  Mutations of the BRAF gene in human cancer , 2002, Nature.

[170]  J M Trent,et al.  The genetics of cutaneous melanoma. , 2000, Clinics in laboratory medicine.

[171]  N. Sampas,et al.  Molecular classification of cutaneous malignant melanoma by gene expression profiling , 2000, Nature.

[172]  Keith D Wilkinson,et al.  BAP1: a novel ubiquitin hydrolase which binds to the BRCA1 RING finger and enhances BRCA1-mediated cell growth suppression , 1998, Oncogene.

[173]  D. Pinkel,et al.  Chromosomal gains and losses in primary cutaneous melanomas detected by comparative genomic hybridization. , 1998, Cancer research.

[174]  P. Guldberg,et al.  Disruption of the MMAC1/PTEN gene by deletion or mutation is a frequent event in malignant melanoma. , 1997, Cancer research.

[175]  N. Bornfeld,et al.  Prognostic implications of monosomy 3 in uveal melanoma , 1996, The Lancet.

[176]  F. Zindy,et al.  Alternative reading frames of the INK4a tumor suppressor gene encode two unrelated proteins capable of inducing cell cycle arrest , 1995, Cell.

[177]  B. Dynlacht,et al.  Tumour-derived p16 alleles encoding proteins defective in cell-cycle inhibition , 1995, Nature.

[178]  J. Bartek,et al.  Retinoblastoma-protein-dependent cell-cycle inhibition by the tumour suppressor p16 , 1995, Nature.

[179]  R. Weinberg,et al.  The retinoblastoma protein and cell cycle control , 1995, Cell.

[180]  S. Sprang,et al.  Mechanism of GTP hydrolysis by G-protein alpha subunits. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[181]  W. Clark,et al.  Germline p16 mutations in familial melanoma , 1994, Nature Genetics.

[182]  M. Skolnick,et al.  Analysis of the p16 gene (CDKN2) as a candidate for the chromosome 9p melanoma susceptibility locus , 1994, Nature Genetics.

[183]  M. Skolnick,et al.  A cell cycle regulator potentially involved in genesis of many tumor types. , 1994, Science.

[184]  Koichiro R. Isshiki,et al.  Chromosome 10 allelic loss in malignant melanoma , 1993, Genes, chromosomes & cancer.

[185]  M. Skolnick,et al.  Assignment of a locus for familial melanoma, MLM, to chromosome 9p13-p22. , 1992, Science.

[186]  N. Bornfeld,et al.  Chromosomal aberrations defining uveal melanoma of poor prognosis , 1992, The Lancet.

[187]  P. O’Connell,et al.  The GAP-related domain of the neurofibromatosis type 1 gene product interacts with ras p21 , 1990, Cell.

[188]  P. O'Connell,et al.  Deletions and a translocation interrupt a cloned gene at the neurofibromatosis type 1 locus , 1990, Cell.

[189]  B. Brownstein,et al.  Type 1 neurofibromatosis gene: identification of a large transcript disrupted in three NF1 patients. , 1990, Science.

[190]  P. O'Connell,et al.  A major segment of the neurofibromatosis type 1 gene: cDNA sequence, genomic structure, and point mutations , 1990, Cell.

[191]  L. J. Veer,et al.  N-ras mutations in human cutaneous melanoma from sun-exposed body sites , 1989, Molecular and cellular biology.

[192]  Y. Ueyama,et al.  B-raf, a new member of the raf family, is activated by DNA rearrangement , 1988, Molecular and cellular biology.

[193]  T. Bonner,et al.  Actively transcribed genes in the raf oncogene group, located on the X chromosome in mouse and human. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[194]  G. Currie,et al.  Activation of N-ras in a human melanoma cell line , 1985, Molecular and cellular biology.

[195]  L. Old,et al.  Transforming ras genes from human melanoma: a manifestation of tumour heterogeneity? , 1984, Nature.

[196]  R. Lurz,et al.  Two unrelated cell‐derived sequences in the genome of avian leukemia and carcinoma inducing retrovirus MH2. , 1983, The EMBO journal.

[197]  F H Reynolds,et al.  Structure and biological activity of v-raf, a unique oncogene transduced by a retrovirus. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[198]  C. Marshall,et al.  Identification of transforming gene in two human sarcoma cell lines as a new member of the ras gene family located on chromosome 1 , 1983, Nature.

[199]  D. Anderson Ceinical characteristics of the genetic variety of cutaneous melanoma in man , 1971, Cancer.

[200]  Jochen K. Lennerz,et al.  An ultraviolet-radiation-independent pathway to melanoma carcinogenesis in the red hair / fair skin background , 2012 .

[201]  M. Smith,et al.  Fluorescence In Situ Hybridization (FISH) as an Ancillary Diagnostic Tool in the Diagnosis of Melanoma , 2011 .

[202]  J. Troge,et al.  Inferring tumor progression from genomic heterogeneity. , 2010, Genome research.

[203]  W. Cavenee,et al.  Loss of Heterozygosity for 10q22â€"lOqterin Malignant Melanoma Progression' , 1994 .

[204]  J. Hepler,et al.  Cell signalling diversity of the Gqalpha family of heterotrimeric G proteins. , 2006, Cellular signalling.

[205]  P. Meltzer,et al.  High frequency of BRAF mutations in nevi , 2003, Nature Genetics.

[206]  L. Bonetta Virus, cells and videotape , 2002, Nature Medicine.

[207]  A. Sober,et al.  Novel mutations in the p16/CDKN2A binding region of the cyclin-dependent kinase-4 gene. , 1998, Cancer research.

[208]  C. Marshall,et al.  Control of the ERK MAP kinase cascade by Ras and Raf. , 1996, Cancer surveys.

[209]  M. Wigler,et al.  Isolation and preliminary characterization of the transforming gene of a human neuroblastoma cell line. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[210]  D. Schadendorf,et al.  Highly Recurrent TERT Promoter Mutations in Human Melanoma , 2022 .