DYNAMICS OF PROTEIN STRUCTURES AND ITS IMPACT ON LOCAL STRUCTURAL BEHAVIORS.

Protein structures are highly dynamic in nature contrary to their depiction in crystal structures. A major component of structural dynamics is the inherent protein flexibility. The prime objective of this thesis is to understand the role of the inherent dynamics in protein structures and its propagation. Protein flexibility is analyzed at various levels of structural complexity, from primary to quaternary levels of organization. Each of the first five chapters’ deal with a different level of local structural organization with first chapter dealing with classical secondary structures while the second one analysis the same using a structural alphabet - Protein Blocks. The third chapter focuses on the impact of special physiological events like post-translational modifications and disorder to order transitions on protein flexibility. These three chapters indicate towards a context dependent implementation of structural flexibility in their local environment. In subsequent chapters, more complex structures are taken under investigation. Chapter 4 deals with integrin αIIbβ3 that is involved in rare genetic disorders. Impact of the pathological mutations on the local flexibility is studied in two rigid domains of integrin αIIbβ3 ectodomain. Inherent flexibility in these domains is shown to modulate the impact of mutations towards the loops. Chapter 5 deals with the structural modelling and dynamics of a more complex protein structure of Duffy Antigen Chemokine Receptor embedded in an erythrocyte mimic membrane system. The model is supported by the most comprehensive phylogenetic analysis on chemokine receptors till date as explained in the last chapter of the thesis.

[1]  R. Levy,et al.  Computer simulations with explicit solvent: recent progress in the thermodynamic decomposition of free energies and in modeling electrostatic effects. , 1998, Annual review of physical chemistry.

[2]  Bosco K. Ho,et al.  Revisiting the Ramachandran plot: Hard‐sphere repulsion, electrostatics, and H‐bonding in the α‐helix , 2003, Protein science : a publication of the Protein Society.

[3]  J. Richardson,et al.  Amino acid preferences for specific locations at the ends of alpha helices. , 1988, Science.

[4]  M. Rosenkilde,et al.  Structural Diversity in Conserved Regions Like the DRY-Motif among Viral 7TM Receptors—A Consequence of Evolutionary Pressure? , 2012, Advances in virology.

[5]  J. Thornton,et al.  Helix geometry in proteins. , 1988, Journal of molecular biology.

[6]  N. Osada,et al.  The evolution of mammalian chemokine genes. , 2010, Cytokine & growth factor reviews.

[7]  R. Dror,et al.  Improved side-chain torsion potentials for the Amber ff99SB protein force field , 2010, Proteins.

[8]  C. Dominguez,et al.  HADDOCK: a protein-protein docking approach based on biochemical or biophysical information. , 2003, Journal of the American Chemical Society.

[9]  P. Chakrabarti,et al.  Sequence and structure patterns in proteins from an analysis of the shortest helices: implications for helix nucleation. , 2003, Journal of molecular biology.

[10]  G. Hart,et al.  The intersections between O-GlcNAcylation and phosphorylation: implications for multiple signaling pathways , 2010, Journal of Cell Science.

[11]  Ji‐Xin Cheng,et al.  Cationic amphiphilic polyproline helix P11LRR targets intracellular mitochondria. , 2010, Journal of controlled release : official journal of the Controlled Release Society.

[12]  M. Tyagi,et al.  Local Protein Structures , 2007 .

[13]  G. Millhauser,et al.  Local helix content in an alanine-rich peptide as determined by the complete set of 3JHNα coupling constants , 1996, Journal of biomolecular NMR.

[14]  S. Harrison,et al.  DNA recognition by proteins with the helix-turn-helix motif. , 1990, Annual review of biochemistry.

[15]  A. Imberty,et al.  Oligosaccharide structures: theory versus experiment. , 1997, Current opinion in structural biology.

[16]  A. Sali,et al.  A composite score for predicting errors in protein structure models , 2006, Protein science : a publication of the Protein Society.

[17]  H Donis-Keller,et al.  The CEPH consortium linkage map of human chromosome 16. , 1994, Genomics.

[18]  C. Foged,et al.  Cell-penetrating peptides for drug delivery across membrane barriers , 2008, Expert opinion on drug delivery.

[19]  L. Vyklický,et al.  The LILI Motif of M3-S2 Linkers Is a Component of the NMDA Receptor Channel Gate , 2018, Front. Mol. Neurosci..

[20]  Christodoulos A. Floudas,et al.  Proteome-wide post-translational modification statistics: frequency analysis and curation of the swiss-prot database , 2011, Scientific reports.

[21]  L. Pauling,et al.  The structure of proteins; two hydrogen-bonded helical configurations of the polypeptide chain. , 1951, Proceedings of the National Academy of Sciences of the United States of America.

[22]  N. Kallenbach,et al.  Effects of side chains in helix nucleation differ from helix propagation , 2014, Proceedings of the National Academy of Sciences.

[23]  Peter M. Kasson,et al.  GROMACS 4.5: a high-throughput and highly parallel open source molecular simulation toolkit , 2013, Bioinform..

[24]  B. Rannala,et al.  Molecular phylogenetics: principles and practice , 2012, Nature Reviews Genetics.

[25]  A. Doig,et al.  Is polyproline II helix the killer conformation? A Raman optical activity study of the amyloidogenic prefibrillar intermediate of human lysozyme. , 2000, Journal of molecular biology.

[26]  T Darden,et al.  New tricks for modelers from the crystallography toolkit: the particle mesh Ewald algorithm and its use in nucleic acid simulations. , 1999, Structure.

[27]  Serge A. Hazout,et al.  Hybrid Protein Model (HPM): a method to compact protein 3D-structure information and physicochemical properties , 2000, Proceedings Seventh International Symposium on String Processing and Information Retrieval. SPIRE 2000.

[28]  Bohdan Schneider,et al.  A short survey on protein blocks , 2010, Biophysical Reviews.

[29]  S. Durani,et al.  Scrutiny of chain-length and N-terminal effects in α-helix folding: a molecular dynamics study on polyalanine peptides , 2017, Journal of biomolecular structure & dynamics.

[30]  A. Bonvin,et al.  The HADDOCK web server for data-driven biomolecular docking , 2010, Nature Protocols.

[31]  J. Thornton,et al.  PROMOTIF—A program to identify and analyze structural motifs in proteins , 1996, Protein science : a publication of the Protein Society.

[32]  Rajeev Aurora,et al.  Hydrophobic Interactions at the Ccap Position of the C-capping Motif of α-Helices , 2002 .

[33]  P. Delannoy,et al.  Role of Cytokine-Induced Glycosylation Changes in Regulating Cell Interactions and Cell Signaling in Inflammatory Diseases and Cancer , 2016, Cells.

[34]  M. Mann,et al.  Decoding signalling networks by mass spectrometry-based proteomics , 2010, Nature Reviews Molecular Cell Biology.

[35]  Joël Pothier,et al.  P-SEA: a new efficient assignment of secondary structure from C alpha trace of proteins , 1997, Comput. Appl. Biosci..

[36]  L. Serrano,et al.  C-capping and helix stability: the Pro C-capping motif. , 1997, Journal of molecular biology.

[37]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[38]  J. Chmielewski,et al.  Cell penetrating agents based on a polyproline helix scaffold. , 2005, Journal of the American Chemical Society.

[39]  V. V. Khrustalev,et al.  The Influence of Flanking Secondary Structures on Amino Acid Content and Typical Lengths of 3/10 Helices , 2014, International journal of proteomics.

[40]  H. Toh,et al.  Evolutionary Analysis of Functional Divergence among Chemokine Receptors, Decoy Receptors, and Viral Receptors , 2012, Front. Microbio..

[41]  R. Lefkowitz,et al.  β-arrestin- but not G protein-mediated signaling by the “decoy” receptor CXCR7 , 2009, Proceedings of the National Academy of Sciences.

[42]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[43]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[44]  H. Dyson,et al.  Intrinsically unstructured proteins: re-assessing the protein structure-function paradigm. , 1999, Journal of molecular biology.

[45]  Jean-Christophe Gelly,et al.  mulPBA: an efficient multiple protein structure alignment method based on a structural alphabet , 2014, Journal of biomolecular structure & dynamics.

[46]  Kelley W. Moremen,et al.  Vertebrate protein glycosylation: diversity, synthesis and function , 2012, Nature Reviews Molecular Cell Biology.

[47]  H. Sugeta,et al.  General method for calculating helical parameters of polymer chains from bond lengths, bond angles, and internal‐rotation angles , 1967 .

[48]  C. Caux,et al.  Selective Recruitment of Immature and Mature Dendritic Cells by Distinct Chemokines Expressed in Different Anatomic Sites , 1998, The Journal of experimental medicine.

[49]  John P. Overington,et al.  Derivation of rules for comparative protein modeling from a database of protein structure alignments , 1994, Protein science : a publication of the Protein Society.

[50]  K. Kuczera,et al.  Transitions from alpha to pi helix observed in molecular dynamics simulations of synthetic peptides. , 2000, Biochemistry.

[51]  G. Lippi,et al.  Glanzmann thrombasthenia: an update. , 2010, Clinica chimica acta; international journal of clinical chemistry.

[52]  P. Mollison,et al.  A New Human Blood Group , 1950, Nature.

[53]  T. Tsunoda,et al.  SucStruct: Prediction of succinylated lysine residues by using structural properties of amino acids. , 2017, Analytical biochemistry.

[54]  G. Millhauser Views of helical peptides: a proposal for the position of 3(10)-helix along the thermodynamic folding pathway. , 1995, Biochemistry.

[55]  M. Naito,et al.  Development of a Cell-penetrating Peptide that Exhibits Responsive Changes in its Secondary Structure in the Cellular Environment , 2016, Scientific Reports.

[56]  J. Richardson,et al.  The anatomy and taxonomy of protein structure. , 1981, Advances in protein chemistry.

[57]  Changiz Eslahchi,et al.  PROSIGN: A method for protein secondary structure assignment based on three-dimensional coordinates of consecutive Calpha atoms , 2008, Comput. Biol. Chem..

[58]  Andrei Alexeevski,et al.  Sheep: a Tool for Description of β-Sheets in protein 3D Structures , 2012, J. Bioinform. Comput. Biol..

[59]  N Srinivasan,et al.  Structural modes of stabilization of permissive phosphorylation sites in protein kinases: distinct strategies in Ser/Thr and Tyr kinases. , 2004, Journal of molecular biology.

[60]  L. Jensen,et al.  Mass Spectrometric Analysis of Lysine Ubiquitylation Reveals Promiscuity at Site Level* , 2010, Molecular & Cellular Proteomics.

[61]  T. Gibson,et al.  Protein disorder prediction: implications for structural proteomics. , 2003, Structure.

[62]  Thomas D. Pollard,et al.  Actin And Myosin And Cell Movemen , 1974 .

[63]  P. Murphy,et al.  Cloning of complementary DNA encoding a functional human interleukin-8 receptor. , 1991, Science.

[64]  Matthew P. Jacobson,et al.  Conformational Changes in Protein Loops and Helices Induced by Post-Translational Phosphorylation , 2006, PLoS Comput. Biol..

[65]  Hassan Belrhali,et al.  Structural basis for Duffy recognition by the malaria parasite Duffy-binding-like domain , 2006, Nature.

[66]  P Ghanouni,et al.  Mutation of a highly conserved aspartic acid in the beta2 adrenergic receptor: constitutive activation, structural instability, and conformational rearrangement of transmembrane segment 6. , 1999, Molecular pharmacology.

[67]  A. D. de Brevern Extension of the classical classification of β-turns , 2016, Scientific Reports.

[68]  T. Pawson,et al.  Post-translational modifications in signal integration , 2010, Nature Structural &Molecular Biology.

[69]  F. Richards,et al.  Identification of structural motifs from protein coordinate data: Secondary structure and first‐level supersecondary structure * , 1988, Proteins.

[70]  Jianfeng Chen,et al.  2012 Landes Bioscience. Do not distribute. The regulation of integrin function by divalent cations , 2012 .

[71]  J. Felsenstein CONFIDENCE LIMITS ON PHYLOGENIES: AN APPROACH USING THE BOOTSTRAP , 1985, Evolution; international journal of organic evolution.

[72]  Oliviero Carugo,et al.  Half a century of Ramachandran plots. , 2013, Acta crystallographica. Section D, Biological crystallography.

[73]  Pierrick Craveur,et al.  PTM-SD: a database of structurally resolved and annotated posttranslational modifications in proteins , 2014, Database J. Biol. Databases Curation.

[74]  Christopher J. Oldfield,et al.  Functional anthology of intrinsic disorder. 3. Ligands, post-translational modifications, and diseases associated with intrinsically disordered proteins. , 2007, Journal of proteome research.

[75]  Ben M. Webb,et al.  Comparative Protein Structure Modeling Using MODELLER , 2016, Current protocols in bioinformatics.

[76]  Ernst-Walter Knapp,et al.  Protein Secondary Structure Classification Revisited: Processing DSSP Information with PSSC , 2014, J. Chem. Inf. Model..

[77]  I. Miller,et al.  In silico prediction and characterization of protein post-translational modifications. , 2016, Journal of proteomics.

[78]  M. Parrinello,et al.  Polymorphic transitions in single crystals: A new molecular dynamics method , 1981 .

[79]  C. Sotriffer,et al.  Automated docking of ligands to antibodies: methods and applications. , 2000, Methods.

[80]  C. Tournamille,et al.  Disruption of a GATA motif in the Duffy gene promoter abolishes erythroid gene expression in Duffy–negative individuals , 1995, Nature Genetics.

[81]  I. E. Sánchez,et al.  Prediction of Spontaneous Protein Deamidation from Sequence-Derived Secondary Structure and Intrinsic Disorder , 2015, PloS one.

[82]  T. Schwartz,et al.  Potent inhibition of HIV-1 infectivity in macrophages and lymphocytes by a novel CCR5 antagonist. , 1997, Science.

[83]  S. Ballas,et al.  Pathways of de novo phospholipid synthesis in reticulocytes. , 1974, Biochimica et biophysica acta.

[84]  S. Teichmann,et al.  Structure, dynamics, assembly, and evolution of protein complexes. , 2015, Annual review of biochemistry.

[85]  G. Ciccotti,et al.  Numerical Integration of the Cartesian Equations of Motion of a System with Constraints: Molecular Dynamics of n-Alkanes , 1977 .

[86]  M. Stone,et al.  Characterization of binding between the chemokine eotaxin and peptides derived from the chemokine receptor CCR3. , 2000, The Journal of biological chemistry.

[87]  L. S. Swapna,et al.  Comparison of tertiary structures of proteins in protein-protein complexes with unbound forms suggests prevalence of allostery in signalling proteins , 2012, BMC Structural Biology.

[88]  S. Balaji,et al.  PALI - a database of Phylogeny and ALIgnment of homologous protein structures , 2001, Nucleic Acids Res..

[89]  Qian-zhong Li,et al.  Using K-minimum increment of diversity to predict secretory proteins of malaria parasite based on groupings of amino acids , 2010, Amino Acids.

[90]  C. Dobson Protein folding and misfolding , 2003, Nature.

[91]  M. Baggiolini,et al.  Deletion of the NH2-terminal residue converts monocyte chemotactic protein 1 from an activator of basophil mediator release to an eosinophil chemoattractant , 1996, The Journal of experimental medicine.

[92]  C. Lim,et al.  Discovering structural motifs using a structural alphabet: Application to magnesium-binding sites , 2007, BMC Bioinformatics.

[93]  K. Ghosh,et al.  Novel mutations in GP IIb gene in Glanzmann's thrombasthenia from India , 2009, Platelets.

[94]  K. Katoh,et al.  MAFFT: a novel method for rapid multiple sequence alignment based on fast Fourier transform. , 2002, Nucleic acids research.

[95]  Payne,et al.  Periodic boundary conditions in ab initio calculations. , 1995, Physical review. B, Condensed matter.

[96]  Dale E Tronrud,et al.  Lessons from the lysozyme of phage T4 , 2010, Protein science : a publication of the Protein Society.

[97]  Adam Godzik,et al.  TOPS++FATCAT: Fast flexible structural alignment using constraints derived from TOPS+ Strings Model , 2008, BMC Bioinformatics.

[98]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[99]  P. Gane,et al.  Sequence, evolution and ligand binding properties of mammalian Duffy antigen/receptor for chemokines , 2004, Immunogenetics.

[100]  L. Alberio,et al.  Expanding the Mutation Spectrum Affecting αIIbβ3 Integrin in Glanzmann Thrombasthenia: Screening of the ITGA2B and ITGB3 Genes in a Large International Cohort , 2015, Human mutation.

[101]  T L Blundell,et al.  Properties of polyproline II, a secondary structure element implicated in protein–protein interactions , 2005, Proteins.

[102]  A. Bornot,et al.  Protein contacts, inter-residue interactions and side-chain modelling. , 2008, Biochimie.

[103]  Ming Tang,et al.  PROMALS3D web server for accurate multiple protein sequence and structure alignments , 2008, Nucleic Acids Res..

[104]  Berk Hess,et al.  LINCS: A linear constraint solver for molecular simulations , 1997, J. Comput. Chem..

[105]  P. Agarwal Role of protein dynamics in reaction rate enhancement by enzymes. , 2005, Journal of the American Chemical Society.

[106]  Karin M. Verspoor,et al.  A close look at protein function prediction evaluation protocols , 2015, GigaScience.

[107]  R. Darnell,et al.  Sequence-Specific RNA Binding by a Nova KH Domain Implications for Paraneoplastic Disease and the Fragile X Syndrome , 2000, Cell.

[108]  Lena Huldén,et al.  Activation of the hypnozoite: a part of Plasmodium vivax life cycle and survival , 2011, Malaria Journal.

[109]  A. Zlotnik,et al.  The chemokine superfamily revisited. , 2012, Immunity.

[110]  L. Pauling,et al.  The structure of fibrous proteins of the collagen-gelatin group. , 1951, Proceedings of the National Academy of Sciences of the United States of America.

[111]  Wei-Guo Zhu,et al.  Surf the Post-translational Modification Network of p53 Regulation , 2012, International journal of biological sciences.

[112]  K. Hinsen Analysis of domain motions by approximate normal mode calculations , 1998, Proteins.

[113]  B. L. Sibanda,et al.  β-Hairpin families in globular proteins , 1985, Nature.

[114]  B. Matthews,et al.  The three dimensional structure of the lysozyme from bacteriophage T4. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[115]  Baldomero Oliva,et al.  Including Functional Annotations and Extending the Collection of Structural Classifications of Protein Loops (ArchDB) , 2007, Bioinformatics and biology insights.

[116]  M. Bonn,et al.  SAP(E) - A cell-penetrating polyproline helix at lipid interfaces. , 2016, Biochimica et biophysica acta.

[117]  S. Costantini,et al.  An overview of the sequence features of N- and C-terminal segments of the human chemokine receptors. , 2014, Cytokine.

[118]  S. Scheres,et al.  How cryo-EM is revolutionizing structural biology. , 2015, Trends in biochemical sciences.

[119]  V. Hilser,et al.  The ensemble nature of allostery , 2014, Nature.

[120]  L. Pauling,et al.  Two hydrogen-bonded spiral configurations of the polypeptide chain , 1950 .

[121]  Kuldip K. Paliwal,et al.  Highly accurate sequence-based prediction of half-sphere exposures of amino acid residues in proteins , 2016, Bioinform..

[122]  M. Stone,et al.  The structural role of receptor tyrosine sulfation in chemokine recognition , 2014, British journal of pharmacology.

[123]  M. Williamson,et al.  The structure and function of proline-rich regions in proteins. , 1994, The Biochemical journal.

[124]  Jean-François Sadoc,et al.  Protein secondary structure assignment through Voronoï tessellation , 2004, Proteins.

[125]  K. Karplus,et al.  Hidden Markov models that use predicted local structure for fold recognition: Alphabets of backbone geometry , 2003, Proteins.

[126]  Dirk Walther,et al.  The Roles of Post-translational Modifications in the Context of Protein Interaction Networks , 2015, PLoS Comput. Biol..

[127]  A. Ratner S. aureus Toxins Join the DARC Side. , 2015, Cell host & microbe.

[128]  K. Mendis,et al.  Evolutionary and Historical Aspects of the Burden of Malaria , 2002, Clinical Microbiology Reviews.

[129]  Alexandre G. de Brevern,et al.  Improving protein fold recognition with hybrid profiles combining sequence and structure evolution , 2015, Bioinform..

[130]  Emmanuel Oluwatobi Salawu,et al.  RaFoSA: Random forests secondary structure assignment for coarse-grained and all-atom protein systems , 2016 .

[131]  M. Rosenkilde,et al.  Structure, function and physiological consequences of virally encoded chemokine seven transmembrane receptors , 2008, British journal of pharmacology.

[132]  T. Schwartz,et al.  Selective recognition of the membrane‐bound CX3C chemokine, fractalkine, by the human cytomegalovirus‐encoded broad‐spectrum receptor US28 , 1998, FEBS letters.

[133]  T. Schwartz,et al.  Metal Ion Site Engineering Indicates a Global Toggle Switch Model for Seven-transmembrane Receptor Activation* , 2006, Journal of Biological Chemistry.

[134]  Julie Bernauer,et al.  DiMoVo: a Voronoi tessellation-based method for discriminating crystallographic and biological protein-protein interactions , 2008, Bioinform..

[135]  T. Blundell,et al.  Comparative protein modelling by satisfaction of spatial restraints. , 1993, Journal of molecular biology.

[136]  Christopher J. Oldfield,et al.  Back to the Future: Nuclear Magnetic Resonance and Bioinformatics Studies on Intrinsically Disordered Proteins. , 2015, Advances in experimental medicine and biology.

[137]  Charles L. Brooks,et al.  PCASSO: A fast and efficient Cα‐based method for accurately assigning protein secondary structure elements , 2014, J. Comput. Chem..

[138]  Vincent Miele,et al.  Ultra-fast sequence clustering from similarity networks with SiLiX , 2011, BMC Bioinformatics.

[139]  Manju Bansal,et al.  Geometrical and Sequence Characteristics of α-Helices in Globular Proteins , 1998 .

[140]  Matthew P Torres,et al.  Proteome-wide Structural Analysis of PTM Hotspots Reveals Regulatory Elements Predicted to Impact Biological Function and Disease , 2016, Molecular & Cellular Proteomics.

[141]  R. Lavery,et al.  Describing protein structure: A general algorithm yielding complete helicoidal parameters and a unique overall axis , 1989, Proteins.

[142]  Marc Parmentier,et al.  A Dual-Tropic Primary HIV-1 Isolate That Uses Fusin and the β-Chemokine Receptors CKR-5, CKR-3, and CKR-2b as Fusion Cofactors , 1996, Cell.

[143]  Michael J E Sternberg,et al.  The Phyre2 web portal for protein modeling, prediction and analysis , 2015, Nature Protocols.

[144]  K. Mendis,et al.  The neglected burden of Plasmodium vivax malaria. , 2001, The American journal of tropical medicine and hygiene.

[145]  Herbert A. Hauptman The Phase Problem of X-Ray Crystallography: Overview , 1997 .

[146]  P. Tompa The interplay between structure and function in intrinsically unstructured proteins , 2005, FEBS letters.

[147]  G. Daniels,et al.  The Fyx phenotype is associated with a missense mutation in the Fyb allele predicting Arg89Cys in the Duffy glycoprotein , 1998, British journal of haematology.

[148]  Sasa N. Malkov,et al.  A Reexamination of Correlations of Amino Acids with Particular Secondary Structures , 2009, The protein journal.

[149]  Magnus R. Hestenes,et al.  Conjugate Direction Methods in Optimization , 1980 .

[150]  C. Cramer,et al.  Implicit Solvation Models: Equilibria, Structure, Spectra, and Dynamics. , 1999, Chemical reviews.

[151]  A. Keith Dunker,et al.  Intrinsic Disorder in the Protein Data Bank , 2007, Journal of biomolecular structure & dynamics.

[152]  Urs Gerber,et al.  G-protein-independent signaling by G-protein-coupled receptors , 2000, Trends in Neurosciences.

[153]  D. Greaves,et al.  The Duffy Antigen/Receptor for Chemokines Exists in an Oligomeric Form in Living Cells and Functionally Antagonizes CCR5 Signaling through Hetero-Oligomerization , 2008, Molecular Pharmacology.

[154]  Jaemin Shin,et al.  SABA (secondary structure assignment program based on only alpha carbons): a novel pseudo center geometrical criterion for accurate assignment of protein secondary structures. , 2011, BMB reports.

[155]  Barry S Coller,et al.  The GPIIb/IIIa (integrin alphaIIbbeta3) odyssey: a technology-driven saga of a receptor with twists, turns, and even a bend. , 2008, Blood.

[156]  Experimental Therapeutics,et al.  Correction to “International Union of Pharmacology. LXXXIX. Update on the Extended Family of Chemokine Receptors and Introducing a New Nomenclature for Atypical Chemokine Receptors” , 2014, Pharmacological Reviews.

[157]  R. Young,et al.  A novel transcription factor reveals a functional link between the RNA polymerase II CTD and TFIID , 1992, Cell.

[158]  Oliver P. Ernst,et al.  Crystal structure of opsin in its G-protein-interacting conformation , 2008, Nature.

[159]  M. O. Dayhoff,et al.  The origin and evolution of protein superfamilies. , 1976, Federation proceedings.

[160]  N. Srinivasan,et al.  A substitution matrix for structural alphabet based on structural alignment of homologous proteins and its applications , 2006, Proteins.

[161]  H. Dirr,et al.  A Conserved N-capping Motif Contributes Significantly to the Stabilization and Dynamics of the C-terminal Region of Class Alpha Glutathione S-Transferases* , 2005, Journal of Biological Chemistry.

[162]  W. Muller,et al.  Mechanisms of leukocyte transendothelial migration. , 2011, Annual review of pathology.

[163]  Joseph Hilbe,et al.  A Handbook of Statistical Analyses Using R , 2006 .

[164]  Gerrit Groenhof,et al.  GROMACS: Fast, flexible, and free , 2005, J. Comput. Chem..

[165]  J. Donohue,et al.  Hydrogen Bonded Helical Configurations of the Polypeptide Chain. , 1953, Proceedings of the National Academy of Sciences of the United States of America.

[166]  G. Rose,et al.  Helix signals in proteins. , 1988, Science.

[167]  Ulrich H. E. Hansmann,et al.  LOCUSTRA: Accurate Prediction of Local Protein Structure Using a Two-Layer Support Vector Machine Approach , 2008, J. Chem. Inf. Model..

[168]  P. Cowan,et al.  Structure of Poly-L-Proline , 1955, Nature.

[169]  M. Margaglione,et al.  Glanzmann’s Thrombasthenia: Identification of 19 New Mutations in 30 Patients , 2002, Thrombosis and Haemostasis.

[170]  K. Hinsen,et al.  Protein secondary-structure description with a coarse-grained model. , 2015, Acta crystallographica. Section D, Biological crystallography.

[171]  A. G. Brevern,et al.  “Pinning strategy”: a novel approach for predicting the backbone structure in terms of protein blocks from sequence , 2007, Journal of Biosciences.

[172]  Oliviero Carugo,et al.  Protein—protein crystal‐packing contacts , 1997, Protein science : a publication of the Protein Society.

[173]  Osamu Yoshie,et al.  Extensive expansion and diversification of the chemokine gene family in zebrafish: Identification of a novel chemokine subfamily CX , 2008, BMC Genomics.

[174]  Yixue Li,et al.  Regulation of Cellular Metabolism by Protein Lysine Acetylation , 2010, Science.

[175]  C. Etchebest,et al.  A structural alphabet for local protein structures: Improved prediction methods , 2005, Proteins.

[176]  N. Srinivasan,et al.  Progressive structure-based alignment of homologous proteins: Adopting sequence comparison strategies. , 2012, Biochimie.

[177]  A. Bornot,et al.  Analysis of loop boundaries using different local structure assignment methods , 2009, Protein science : a publication of the Protein Society.

[178]  C. Ribas,et al.  Mechanisms of regulation of the expression and function of G protein-coupled receptor kinases. , 2003, Cellular signalling.

[179]  Christopher J. Oldfield,et al.  Exploring the binding diversity of intrinsically disordered proteins involved in one‐to‐many binding , 2013, Protein science : a publication of the Protein Society.

[180]  K. Williams,et al.  Cloning of glycoprotein D cDNA, which encodes the major subunit of the Duffy blood group system and the receptor for the Plasmodium vivax malaria parasite. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[181]  Wei Zheng,et al.  Improved Species-Specific Lysine Acetylation Site Prediction Based on a Large Variety of Features Set , 2016, PloS one.

[182]  B Dewald,et al.  Human chemokines: an update. , 1997, Annual review of immunology.

[183]  T. Sewell,et al.  Tertiary interactions stabilise the C-terminal region of human glutathione transferase A1-1: a crystallographic and calorimetric study. , 2005, Journal of molecular biology.

[184]  An Liu,et al.  A New Secondary Structure Assignment Algorithm Using Cα Backbone Fragments , 2016, International journal of molecular sciences.

[185]  Andrew E. Torda,et al.  The GROMOS biomolecular simulation program package , 1999 .

[186]  V. Suresh,et al.  A protein block based fold recognition method for the annotation of twilight zone sequences. , 2013, Protein and peptide letters.

[187]  S. Arnott,et al.  The structure of poly-L-proline II. , 1968, Acta crystallographica. Section B: Structural crystallography and crystal chemistry.

[188]  George D. Rose,et al.  Prediction of chain turns in globular proteins on a hydrophobic basis , 1978, Nature.

[189]  Narayanaswamy Srinivasan,et al.  iPBA: a tool for protein structure comparison using sequence alignment strategies , 2011, Nucleic Acids Res..

[190]  Teuvo Kohonen,et al.  Self-organized formation of topologically correct feature maps , 2004, Biological Cybernetics.

[191]  Brigida Bochicchio,et al.  Polyproline II structure in proteins: identification by chiroptical spectroscopies, stability, and functions. , 2002, Chirality.

[192]  Valerie Daggett,et al.  Dynameomics: a consensus view of the protein unfolding/folding transition state ensemble across a diverse set of protein folds. , 2009, Biophysical journal.

[193]  I. Kufareva Chemokines and their receptors: insights from molecular modeling and crystallography. , 2016, Current opinion in pharmacology.

[194]  P. Gane,et al.  Molecular basis and PCR-DNA typing of the Fya/fyb blood group polymorphism , 1995, Human Genetics.

[195]  Mehrdad Mehrbod,et al.  On the activation of integrin αIIbβ3: outside-in and inside-out pathways. , 2013, Biophysical journal.

[196]  M. Stone,et al.  Mechanisms of Regulation of the Chemokine-Receptor Network , 2017, International journal of molecular sciences.

[197]  T. Schwartz,et al.  Molecular mechanism of 7TM receptor activation--a global toggle switch model. , 2006, Annual review of pharmacology and toxicology.

[198]  H. Nomiyama,et al.  Functional roles of evolutionary conserved motifs and residues in vertebrate chemokine receptors , 2015, Journal of leukocyte biology.

[199]  Jeffery B. Klauda,et al.  CHARMM-GUI Membrane Builder for mixed bilayers and its application to yeast membranes. , 2009, Biophysical journal.

[200]  Matthew L. Danielson,et al.  Computer-aided drug design platform using PyMOL , 2011, J. Comput. Aided Mol. Des..

[201]  Pierrick Craveur,et al.  PredyFlexy: flexibility and local structure prediction from sequence , 2012, Nucleic Acids Res..

[202]  D. Pillitteri,et al.  Novel Mutations in the GPIIb and GPIIIa Genes in Glanzmann Thrombasthenia , 2010, Transfusion Medicine and Hemotherapy.

[203]  Kazushi Nakano,et al.  Human Herpesvirus 7 Open Reading Frame U12 Encodes a Functional β-Chemokine Receptor , 2003, Journal of Virology.

[204]  H. Valadié,et al.  Extension of a local backbone description using a structural alphabet: A new approach to the sequence‐structure relationship , 2002, Protein science : a publication of the Protein Society.

[205]  L. Pauling,et al.  The pleated sheet, a new layer configuration of polypeptide chains. , 1951, Proceedings of the National Academy of Sciences of the United States of America.

[206]  Fabien Cailliez,et al.  Secondary structure assignment that accurately reflects physical and evolutionary characteristics , 2005, BMC Bioinformatics.

[207]  Hsien-Da Huang,et al.  dbPTM 2016: 10-year anniversary of a resource for post-translational modification of proteins , 2015, Nucleic Acids Res..

[208]  A. Rot,et al.  Binding of RANTES, MCP-1, MCP-3, and MIP-1alpha to cells in human skin. , 1998, The American journal of pathology.

[209]  Vu C. Dinh,et al.  Online Bayesian Phylogenetic Inference: Theoretical Foundations via Sequential Monte Carlo , 2016, Systematic biology.

[210]  T. Creamer Left‐handed polyproline II helix formation is (very) locally driven , 1998, Proteins.

[211]  Timothy A. Springer,et al.  Complete integrin headpiece opening in eight steps , 2013, The Journal of cell biology.

[212]  J. Gibrat,et al.  Protein secondary structure assignment revisited: a detailed analysis of different assignment methods , 2005, BMC Structural Biology.

[213]  Carmay Lim,et al.  A structural-alphabet-based strategy for finding structural motifs across protein families , 2010, Nucleic acids research.

[214]  S. Yokoyama,et al.  Multiple Post-translational Modifications Affect Heterologous Protein Synthesis* , 2012, The Journal of Biological Chemistry.

[215]  Narayanaswamy Srinivasan,et al.  Knowledge-based prediction of protein backbone conformation using a structural alphabet , 2017, bioRxiv.

[216]  J. Martens,et al.  SUMOylation regulates ciliary localization of olfactory signaling proteins , 2015, Journal of Cell Science.

[217]  Yanzhi Guo,et al.  A structural dissection of large protein-protein crystal packing contacts , 2015, Scientific Reports.

[218]  E. Butcher Leukocyte-endothelial cell recognition: Three (or more) steps to specificity and diversity , 1991, Cell.

[219]  Ivet Bahar,et al.  Changes in Dynamics upon Oligomerization Regulate Substrate Binding and Allostery in Amino Acid Kinase Family Members , 2011, PLoS Comput. Biol..

[220]  Joseph Sodroski,et al.  Tyrosine Sulfation of the Amino Terminus of CCR5 Facilitates HIV-1 Entry , 1999, Cell.

[221]  S. Ebashi,et al.  Histone H1 kinase specific to the SPKK motif. , 1990, Journal of biochemistry.

[222]  Christian Cole,et al.  JPred4: a protein secondary structure prediction server , 2015, Nucleic Acids Res..

[223]  N. Colloc'h,et al.  Comparison of three algorithms for the assignment of secondary structure in proteins: the advantages of a consensus assignment. , 1993, Protein engineering.

[224]  F. Crick Central Dogma of Molecular Biology , 1970, Nature.

[225]  David C. Jones,et al.  A mutation data matrix for transmembrane proteins , 1994, FEBS letters.

[226]  Thomas N. Kledal,et al.  Agonists and Inverse Agonists for the Herpesvirus 8-encoded Constitutively Active Seven-transmembrane Oncogene Product, ORF-74* , 1999, The Journal of Biological Chemistry.

[227]  Konrad Hinsen,et al.  Structural flexibility in proteins: impact of the crystal environment , 2008, Bioinform..

[228]  Alexandre G. de Brevern,et al.  Use of a structural alphabet for analysis of short loops connecting repetitive structures , 2004, BMC Bioinformatics.

[229]  Narayanaswamy Srinivasan,et al.  Nucleic Acids Research Advance Access published June 21, 2007 PIC: Protein Interactions Calculator , 2007 .

[230]  E. Baker,et al.  Hydrogen bonding in globular proteins. , 1984, Progress in biophysics and molecular biology.

[231]  A. Doig,et al.  Models for the 310‐helix/coil, π‐helix/coil, and α‐helix/310‐helix/coil transitions in isolated peptides , 1996, Protein science : a publication of the Protein Society.

[232]  Noritaka Nishida,et al.  Structure of a complete integrin ectodomain in a physiologic resting state and activation and deactivation by applied forces. , 2008, Molecular cell.

[233]  Andrew J. Bannister,et al.  Regulation of chromatin by histone modifications , 2011, Cell Research.

[234]  P. Ruzza,et al.  Tat cell‐penetrating peptide has the characteristics of a poly(proline) II helix in aqueous solution and in SDS micelles , 2004, Journal of peptide science : an official publication of the European Peptide Society.

[235]  J. George,et al.  Glanzmann's thrombasthenia: the spectrum of clinical disease. , 1990, Blood.

[236]  L. Bendall Chemokines and their receptors in disease. , 2005, Histology and histopathology.

[237]  T. Weaver The π‐helix translates structure into function , 2008, Protein science : a publication of the Protein Society.

[238]  J L Sussman,et al.  A 3D building blocks approach to analyzing and predicting structure of proteins , 1989, Proteins.

[239]  Hyeon Joo,et al.  OPM database and PPM web server: resources for positioning of proteins in membranes , 2011, Nucleic Acids Res..

[240]  G. N. Ramachandran,et al.  Stereochemistry of polypeptide chain configurations. , 1963, Journal of molecular biology.

[241]  R. L. Baldwin,et al.  Helix propensities of the amino acids measured in alanine‐based peptides without helix‐stabilizing side‐chain interactions , 1994, Protein science : a publication of the Protein Society.

[242]  R. Aurora,et al.  Helix capping , 1998, Protein science : a publication of the Protein Society.

[243]  Dmitrij Frishman,et al.  STRIDE: a web server for secondary structure assignment from known atomic coordinates of proteins , 2004, Nucleic Acids Res..

[244]  Nick V. Grishin,et al.  PALSSE: A program to delineate linear secondary structural elements from protein structures , 2005, BMC Bioinformatics.

[245]  Wei Li,et al.  RaptorX-Property: a web server for protein structure property prediction , 2016, Nucleic Acids Res..

[246]  Catherine Etchebest,et al.  Predicting protein flexibility through the prediction of local structures , 2011, Proteins.

[247]  X. Pillois,et al.  Glanzmann Thrombasthenia: State of the Art and Future Directions , 2013, Seminars in Thrombosis & Hemostasis.

[248]  Dong Xu,et al.  Correlation Between Posttranslational Modification and Intrinsic Disorder in Protein , 2011, Pacific Symposium on Biocomputing.

[249]  Pierre Baldi,et al.  Improving the prediction of protein secondary structure in three and eight classes using recurrent neural networks and profiles , 2002, Proteins.

[250]  C. Chitnis,et al.  The domain on the Duffy blood group antigen for binding Plasmodium vivax and P. knowlesi malarial parasites to erythrocytes , 1996, The Journal of experimental medicine.

[251]  Jan H. Jensen,et al.  PROPKA3: Consistent Treatment of Internal and Surface Residues in Empirical pKa Predictions. , 2011, Journal of chemical theory and computation.

[252]  J. Farber,et al.  Chemokine receptors as HIV-1 coreceptors: roles in viral entry, tropism, and disease. , 1999, Annual review of immunology.

[253]  David L. Smith,et al.  A Long Neglected World Malaria Map: Plasmodium vivax Endemicity in 2010 , 2012, PLoS neglected tropical diseases.

[254]  H. Vodermaier,et al.  APC/C and SCF: Controlling Each Other and the Cell Cycle , 2004, Current Biology.

[255]  Alberto Mantovani,et al.  β-Arrestin-dependent Constitutive Internalization of the Human Chemokine Decoy Receptor D6* , 2004, Journal of Biological Chemistry.

[256]  F. Liu,et al.  Post-translational modifications of tau protein in Alzheimer’s disease , 2005, Journal of Neural Transmission.

[257]  Daniele Raimondi,et al.  Early Folding Events, Local Interactions, and Conservation of Protein Backbone Rigidity. , 2016, Biophysical journal.

[258]  Bangjun Zhou,et al.  Conventional and unconventional ubiquitination in plant immunity. , 2017, Molecular plant pathology.

[259]  A. D. de Brevern,et al.  Modeling and Molecular Dynamics of HPA-1a and -1b Polymorphisms: Effects on the Structure of the β3 Subunit of the αIIbβ3 Integrin , 2012, PloS one.

[260]  Haiyan Liu,et al.  Fragment‐based local statistical potentials derived by combining an alphabet of protein local structures with secondary structures and solvent accessibilities , 2009, Proteins.

[261]  Lilia M. Iakoucheva,et al.  Loss of Post-Translational Modification Sites in Disease , 2010, Pacific Symposium on Biocomputing.

[262]  T. Handel,et al.  Chemokine receptor oligomerization and allostery. , 2013, Progress in molecular biology and translational science.

[263]  B. Curtis Recent progress in understanding the pathogenesis of fetal and neonatal alloimmune thrombocytopenia , 2015, British journal of haematology.

[264]  P. Cowan,et al.  The Polypeptide Chain Configuration of Collagen , 1955, Nature.

[265]  P. Argos,et al.  Knowledge‐based protein secondary structure assignment , 1995, Proteins.

[266]  K. Katoh,et al.  MAFFT Multiple Sequence Alignment Software Version 7: Improvements in Performance and Usability , 2013, Molecular biology and evolution.

[267]  Avner Schlessinger,et al.  PROFbval: predict flexible and rigid residues in proteins , 2006, Bioinform..

[268]  A. D. de Brevern,et al.  In silico analysis of Glanzmann variants of Calf-1 domain of αIIbβ3 integrin revealed dynamic allosteric effect , 2017, Scientific Reports.

[269]  John A Latham,et al.  Cross-regulation of histone modifications , 2007, Nature Structural &Molecular Biology.

[270]  G N Ramachandran,et al.  Interchain hydrogen bonds via bound water molecules in the collagen triple helix , 1968, Biopolymers.

[271]  I. Bahar,et al.  Normal mode analysis of biomolecular structures: functional mechanisms of membrane proteins. , 2010, Chemical reviews.

[272]  N. Tolia,et al.  Red Blood Cell Invasion by Plasmodium vivax: Structural Basis for DBP Engagement of DARC , 2014, PLoS pathogens.

[273]  M. Karplus,et al.  CHARMM: A program for macromolecular energy, minimization, and dynamics calculations , 1983 .

[274]  K. Henrick,et al.  Inference of macromolecular assemblies from crystalline state. , 2007, Journal of molecular biology.

[275]  Baldomero Oliva,et al.  Prediction of the conformation and geometry of loops in globular proteins: Testing ArchDB, a structural classification of loops , 2005, Proteins.

[276]  N. Borkakoti,et al.  Mutagenesis Studies of Interleukin-8 , 1996, The Journal of Biological Chemistry.

[277]  M. Gobbi,et al.  Cutting Edge: Scavenging of Inflammatory CC Chemokines by the Promiscuous Putatively Silent Chemokine Receptor D6 1 , 2003, The Journal of Immunology.

[278]  Matthew J. Betts,et al.  Systematic identification of phosphorylation-mediated protein interaction switches , 2017, PLoS Comput. Biol..

[279]  F. Terro,et al.  Post-translational modifications of tau protein: Implications for Alzheimer's disease , 2011, Neurochemistry International.

[280]  A. von Haeseler,et al.  IQ-TREE: A Fast and Effective Stochastic Algorithm for Estimating Maximum-Likelihood Phylogenies , 2014, Molecular biology and evolution.

[281]  J. Smith Erythrocyte Membrane: Structure, Function, and Pathophysiology , 1987, Veterinary pathology.

[282]  Alexandre G. de Brevern,et al.  Protein short loop prediction in terms of a structural alphabet , 2009, Comput. Biol. Chem..

[283]  V. Hsu,et al.  The extended left‐handed helix: A simple nucleic acid‐binding motif , 2004, Proteins.

[284]  Zhongyi Cheng,et al.  Bioinformatic Analysis and Post-Translational Modification Crosstalk Prediction of Lysine Acetylation , 2011, PloS one.

[285]  B. Volkman,et al.  New paradigms in chemokine receptor signal transduction: Moving beyond the two-site model. , 2016, Biochemical pharmacology.

[286]  Peer Bork,et al.  Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees , 2016, Nucleic Acids Res..

[287]  Gert Vriend,et al.  Alpha-Bulges in G Protein-Coupled Receptors , 2014, International journal of molecular sciences.

[288]  Abhishek K. Jha,et al.  Helix, sheet, and polyproline II frequencies and strong nearest neighbor effects in a restricted coil library. , 2005, Biochemistry.

[289]  B. Charloteaux,et al.  Prediction of peptide structure: How far are we? , 2006, Proteins.

[290]  A. Vertegaal,et al.  A comprehensive compilation of SUMO proteomics , 2016, Nature Reviews Molecular Cell Biology.

[291]  J. Chmielewski,et al.  Cationic Amphiphilic Polyproline Helices: Side‐Chain Variations and Cell‐Specific Internalization , 2009, Chemical Biology and Drug Design.

[292]  M. Bansal,et al.  Dissecting π‐helices: sequence, structure and function , 2015, The FEBS journal.

[293]  Marcel Bessis,et al.  Red Cell Shape , 1973, Springer Berlin Heidelberg.

[294]  J. Dvorak,et al.  Erythrocyte receptors for (Plasmodium knowlesi) malaria: Duffy blood group determinants. , 1975, Science.

[295]  M. Ginsberg,et al.  Integrin activation , 2014, BMB reports.

[296]  K. Soman,et al.  Occurrence of a single helix of the collagen type in globular proteins. , 1983, Journal of molecular biology.

[297]  M. Bretscher Asymmetrical lipid bilayer structure for biological membranes. , 1972, Nature: New biology.

[298]  Deni Darmawan,et al.  Biological Communication Behavior through Information Technology Implementation in Learning Accelerated , 2012 .

[299]  M. Rosenkilde,et al.  The chemokine system – a major regulator of angiogenesis in health and disease , 2004, APMIS : acta pathologica, microbiologica, et immunologica Scandinavica.

[300]  P. Murphy Viral exploitation and subversion of the immune system through chemokine mimicry , 2001, Nature Immunology.

[301]  M. Suzuki SPXX, a frequent sequence motif in gene regulatory proteins. , 1989, Journal of molecular biology.

[302]  J. Takagi,et al.  Structural basis for allostery in integrins and binding of ligand-mimetic therapeutics to the platelet receptor for fibrinogen , 2004 .

[303]  B. Rost,et al.  Protein flexibility and rigidity predicted from sequence , 2005, Proteins.

[304]  K. Matsushima,et al.  International union of pharmacology. XXII. Nomenclature for chemokine receptors. , 2000, Pharmacological reviews.

[305]  David S. Goodsell,et al.  AutoDock4 and AutoDockTools4: Automated docking with selective receptor flexibility , 2009, J. Comput. Chem..

[306]  Bin Zhang,et al.  PhosphoSitePlus, 2014: mutations, PTMs and recalibrations , 2014, Nucleic Acids Res..

[307]  R. Nussinov,et al.  Is allostery an intrinsic property of all dynamic proteins? , 2004, Proteins.

[308]  A. Rot,et al.  Duffy antigen receptor for chemokines and its involvement in patterning and control of inflammatory chemokines , 2012, Front. Immun..

[309]  E. Mandelkow,et al.  Structural studies of tau protein and Alzheimer paired helical filaments show no evidence for beta-structure. , 1994, The Journal of biological chemistry.

[310]  T. Schall,et al.  Mutations in the erythrocyte chemokine receptor (Duffy) gene: the molecular basis of the Fya/Fyb antigens and identification of a deletion in the Duffy gene of an apparently healthy individual with the Fy(a – b–) phenotype , 1995, British journal of haematology.

[311]  J. Brugge,et al.  Sensing the environment: a historical perspective on integrin signal transduction , 2002, Nature Cell Biology.

[312]  Burkhard Rost,et al.  DSSPcont: continuous secondary structure assignments for proteins , 2003, Nucleic Acids Res..

[313]  R. Bonecchi,et al.  Atypical Chemokine Receptors and Their Roles in the Resolution of the Inflammatory Response , 2016, Front. Immunol..

[314]  Pierrick Craveur,et al.  β‐Bulges: Extensive structural analyses of β‐sheets irregularities , 2013, Protein science : a publication of the Protein Society.

[315]  M Tyagi,et al.  Protein structure mining using a structural alphabet , 2008, Proteins.

[316]  T. Creamer,et al.  Urea promotes polyproline II helix formation: implications for protein denatured states. , 2005, Biochemistry.

[317]  V. Agrawal,et al.  Promiscuous binding nature of SH3 domains to their target proteins. , 2002, Protein and peptide letters.

[318]  S. Al-Karadaghi,et al.  Occurrence, conformational features and amino acid propensities for the pi-helix. , 2002, Protein engineering.

[319]  Zhaohua Lu,et al.  The Duffy antigen receptor for chemokines: structural analysis and expression in the brain , 1996, Journal of leukocyte biology.

[320]  P. Radivojac,et al.  Improved amino acid flexibility parameters , 2003, Protein science : a publication of the Protein Society.

[321]  Jean-Christophe Gelly,et al.  An empirical energy function for structural assessment of protein transmembrane domains. , 2015, Biochimie.

[322]  P. Iribarren,et al.  Chemokines and chemokine receptors: their manifold roles in homeostasis and disease. , 2004, Cellular & molecular immunology.

[323]  Gianluigi Caltabiano,et al.  The role of Cysteine 6.47 in class A GPCRs , 2013, BMC Structural Biology.

[324]  R. Srinivasan,et al.  Rules for alpha-helix termination by glycine. , 1994, Science.

[325]  P. Mollison,et al.  The Duffy blood group system , 1950, Heredity.

[326]  T. Springer Traffic signals for lymphocyte recirculation and leukocyte emigration: The multistep paradigm , 1994, Cell.

[327]  Alexandre G de Brevern,et al.  αIIbβ3 integrin: new allelic variants in Glanzmann thrombasthenia, effects on ITGA2B and ITGB3 mRNA splicing, expression, and structure–function , 2010, Human mutation.

[328]  C. Venkatachalam Stereochemical criteria for polypeptides and proteins. V. Conformation of a system of three linked peptide units , 1968, Biopolymers.

[329]  A. Imberty,et al.  Stereochemistry of the N-glycosylation sites in glycoproteins. , 1995, Protein engineering.

[330]  D. Hanahan Chemical Composition of Membranes , 1978 .

[331]  S. Wodak,et al.  Relations between protein sequence and structure and their significance. , 1990, Journal of molecular biology.

[332]  Peer Bork,et al.  Bioinformatics Analysis of Functional Associations of PTMs. , 2017, Methods in molecular biology.

[333]  I. Campbell,et al.  Structure of an SH2 domain of the p85 alpha subunit of phosphatidylinositol-3-OH kinase. , 1992, Nature.

[334]  Steven E. Brenner,et al.  SCOPe: Structural Classification of Proteins—extended, integrating SCOP and ASTRAL data and classification of new structures , 2013, Nucleic Acids Res..

[335]  Alexandre G de Brevern,et al.  Analysis of protein chameleon sequence characteristics , 2009, Bioinformation.

[336]  M. E. Karpen,et al.  Differences in the amino acid distributions of 3(10)-helices and alpha-helices. , 1992, Protein science : a publication of the Protein Society.

[337]  J. Johnson,et al.  Amphitropic proteins: regulation by reversible membrane interactions (review). , 1999, Molecular membrane biology.

[338]  Predrag Radivojac,et al.  Post-translational modifications induce significant yet not extreme changes to protein structure , 2012, Bioinform..

[339]  Mark P. Styczynski,et al.  BLOSUM62 miscalculations improve search performance , 2008, Nature Biotechnology.

[340]  Pinak Chakrabarti,et al.  Variants of 310‐helices in proteins , 2002 .

[341]  H. D. del Portillo,et al.  Production of recombinant PvDBPII, receptor binding domain of Plasmodium vivax Duffy binding protein, and evaluation of immunogenicity to identify an adjuvant formulation for vaccine development. , 2017, Protein expression and purification.

[342]  Ű. Langel,et al.  Secondary structure of cell-penetrating peptides controls membrane interaction and insertion. , 2010, Biochimica et biophysica acta.

[343]  Vladimir N. Uversky,et al.  Order, Disorder, and Everything in Between , 2016, Molecules.

[344]  M. Stone,et al.  Identification of Receptor Binding and Activation Determinants in the N-terminal and N-loop Regions of the CC Chemokine Eotaxin* , 2001, The Journal of Biological Chemistry.

[345]  J. Richardson,et al.  The beta bulge: a common small unit of nonrepetitive protein structure. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[346]  Rune Linding,et al.  Cells, shared memory and breaking the PTM code , 2012, Molecular systems biology.

[347]  I. Mijakovic,et al.  Exploring the diversity of protein modifications: special bacterial phosphorylation systems. , 2016, FEMS microbiology reviews.

[348]  Gianluigi Caltabiano,et al.  GPCRtm: An amino acid substitution matrix for the transmembrane region of class A G Protein-Coupled Receptors , 2015, BMC Bioinformatics.

[349]  A. G. Brevern,et al.  A reduced amino acid alphabet for understanding and designing protein adaptation to mutation , 2007, European Biophysics Journal.

[350]  Christian Cole,et al.  The Jpred 3 secondary structure prediction server , 2008, Nucleic Acids Res..

[351]  A. Makarov,et al.  Left-handed polyproline-II helix revisited: proteins causing proteopathies , 2017, Journal of biomolecular structure & dynamics.

[352]  Y. Nishizuka The role of protein kinase C in cell surface signal transduction and tumour promotion , 1984, Nature.

[353]  J. Kendrew,et al.  A Three-Dimensional Model of the Myoglobin Molecule Obtained by X-Ray Analysis , 1958, Nature.

[354]  C L Verlinde,et al.  The role of waters in docking strategies with incremental flexibility for carbohydrate derivatives: heat-labile enterotoxin, a multivalent test case. , 1999, Journal of medicinal chemistry.

[355]  Paul E. Kennedy,et al.  HIV-1 Entry Cofactor: Functional cDNA Cloning of a Seven-Transmembrane, G Protein-Coupled Receptor , 1996, Science.

[356]  M. Sternberg,et al.  Left-handed polyproline II helices commonly occur in globular proteins. , 1993, Journal of molecular biology.

[357]  W. Kabsch,et al.  Dictionary of protein secondary structure: Pattern recognition of hydrogen‐bonded and geometrical features , 1983, Biopolymers.

[358]  Guy Riddihough,et al.  Structure of collagen , 1998, Nature Structural Biology.

[359]  H. Vaudry,et al.  PRR repeats in the intracellular domain of KISS1R are important for its export to cell membrane. , 2013, Molecular endocrinology.

[360]  L. Pal,et al.  Novel protein structural motifs containing two-turn and longer 3(10)-helices. , 1999, Protein engineering.

[361]  E. Nogales The development of cryo-EM into a mainstream structural biology technique , 2015, Nature Methods.

[362]  M. Smit,et al.  Cutting Edge: GPR35/CXCR8 Is the Receptor of the Mucosal Chemokine CXCL17 , 2015, The Journal of Immunology.

[363]  M. Sternberg,et al.  Polyproline-II helix in proteins: structure and function. , 2013, Journal of molecular biology.

[364]  Peer Bork,et al.  PTMcode: a database of known and predicted functional associations between post-translational modifications in proteins , 2012, Nucleic Acids Res..

[365]  R Dustin Schaeffer,et al.  Dynameomics: a comprehensive database of protein dynamics. , 2010, Structure.

[366]  David A. Lee,et al.  CATH: comprehensive structural and functional annotations for genome sequences , 2014, Nucleic Acids Res..

[367]  Michael Y. Galperin,et al.  Beyond complete genomes: from sequence to structure and function. , 1998, Current opinion in structural biology.

[368]  J. Thornton,et al.  Influence of proline residues on protein conformation. , 1991, Journal of molecular biology.

[369]  T. Creamer,et al.  A survey of left‐handed polyproline II helices , 2008, Protein science : a publication of the Protein Society.

[370]  Geoffrey J. Barton,et al.  The Jalview Java alignment editor , 2004, Bioinform..

[371]  R. Schweitzer‐Stenner,et al.  Local Order in the Unfolded State: Conformational Biases and Nearest Neighbor Interactions , 2014, Biomolecules.

[372]  A. D. de Brevern,et al.  From local structure to a global framework: recognition of protein folds , 2014, Journal of The Royal Society Interface.

[373]  A. D. de Brevern,et al.  ORION: a web server for protein fold recognition and structure prediction using evolutionary hybrid profiles , 2016, Scientific Reports.

[374]  B. Dasgupta,et al.  3(10)-Helix adjoining alpha-helix and beta-strand: sequence and structural features and their conservation. , 2005, Biopolymers.

[375]  M. Gedde,et al.  Shape response of human erythrocytes to altered cell pH. , 1995, Blood.

[376]  Markus Christen,et al.  The GROMOS software for biomolecular simulation: GROMOS05 , 2005, J. Comput. Chem..

[377]  Alexandre G. de Brevern,et al.  PolyprOnline: polyproline helix II and secondary structure assignment database , 2014, Database J. Biol. Databases Curation.

[378]  S M King,et al.  Assigning secondary structure from protein coordinate data , 1999, Proteins.

[379]  J. Skolnick,et al.  TM-align: a protein structure alignment algorithm based on the TM-score , 2005, Nucleic acids research.

[380]  T. Suda,et al.  Organization of the chemokine genes in the human and mouse major clusters of CC and CXC chemokines: diversification between the two species , 2001, Genes and Immunity.

[381]  A. Gilman,et al.  G proteins: transducers of receptor-generated signals. , 1987, Annual review of biochemistry.

[382]  B. W. Low,et al.  THE π HELIX—A HYDROGEN BONDED CONFIGURATION OF THE POLYPEPTIDE CHAIN , 1952 .

[383]  E. McNeill,et al.  The Downstream Regulation of Chemokine Receptor Signalling: Implications for Atherosclerosis , 2013, Mediators of inflammation.

[384]  M. Tanner Erythrocyte membrane structure and function. , 2008, Ciba Foundation symposium.

[385]  K. Rajarathnam,et al.  Structural Basis of Chemokine Receptor Function—A Model for Binding Affinity and Ligand Selectivity , 2006, Bioscience reports.

[386]  D. Daleke,et al.  Erythrocyte morphology reflects the transbilayer distribution of incorporated phospholipids , 1989, The Journal of cell biology.

[387]  Craig M. Shakarji,et al.  Least-Squares Fitting Algorithms of the NIST Algorithm Testing System , 1998, Journal of research of the National Institute of Standards and Technology.

[388]  Xiaolong Wang,et al.  Methods for optimizing the structure alphabet sequences of proteins , 2007, Comput. Biol. Medicine.

[389]  Arndt von Haeseler,et al.  W-IQ-TREE: a fast online phylogenetic tool for maximum likelihood analysis , 2016, Nucleic Acids Res..

[390]  R. Lefkowitz,et al.  Multifaceted roles of β-arrestins in the regulation of seven-membrane-spanning receptor trafficking and signalling , 2003 .

[391]  Alexandre G. de Brevern,et al.  Protein Peeling 3D: new tools for analyzing protein structures , 2011, Bioinform..

[392]  Bohdan Schneider,et al.  Protein flexibility in the light of structural alphabets , 2015, Front. Mol. Biosci..

[393]  R. Nussinov,et al.  Allostery: absence of a change in shape does not imply that allostery is not at play. , 2008, Journal of molecular biology.

[394]  A. G. Brevern,et al.  Use of a structural alphabet to find compatible folds for amino acid sequences , 2015, Protein science : a publication of the Protein Society.

[395]  A. G. Brevern,et al.  A structural model of a seven-transmembrane helix receptor: the Duffy antigen/receptor for chemokine (DARC). , 2005, Biochimica et biophysica acta.

[396]  I. McGregor,et al.  The Duffy blood group and malaria prevalence in Gambian West Africans. , 1977, Transactions of the Royal Society of Tropical Medicine and Hygiene.

[397]  N. Khan MEGA - Core of Phylogenetic Analysis in Molecular Evolutionary Genetics , 2017 .

[398]  V. Daggett,et al.  The role of alpha-, 3(10)-, and pi-helix in helix-->coil transitions. , 2003, Protein science : a publication of the Protein Society.

[399]  Tim J. P. Hubbard,et al.  SCOP: a structural classification of proteins database , 1998, Nucleic Acids Res..

[400]  A. G. Brevern,et al.  'Hybrid Protein Model' for optimally defining 3D protein structure fragments , 2003, Bioinform..

[401]  P. Gane,et al.  Close Association of the First and Fourth Extracellular Domains of the Duffy Antigen/Receptor for Chemokines by a Disulfide Bond Is Required for Ligand Binding* , 1997, The Journal of Biological Chemistry.

[402]  D. Eisenberg The discovery of the alpha-helix and beta-sheet, the principal structural features of proteins. , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[403]  P. Lansbury,et al.  NACP, a protein implicated in Alzheimer's disease and learning, is natively unfolded. , 1996, Biochemistry.

[404]  François Major,et al.  A new catalog of protein beta-sheets. , 2005, Proteins.

[405]  C. Etchebest,et al.  Bayesian probabilistic approach for predicting backbone structures in terms of protein blocks , 2000, Proteins.

[406]  E. Antonini,et al.  HEMOGLOBIN AND MYOGLOBIN. , 1964, Advances in protein chemistry.

[407]  Kang Ning,et al.  Automated Identification of Protein Classification and Detection of Annotation Errors in Protein Databases Using Statistical Approaches , 2006, KDLL.

[408]  G. Vriend,et al.  Exploring Protein Dynamics Space: The Dynasome as the Missing Link between Protein Structure and Function , 2012, PloS one.

[409]  E. Orlova,et al.  Structural Analysis of Macromolecular Assemblies by Electron Microscopy , 2011, Chemical reviews.

[410]  R. Stevens,et al.  Crystal structure of the CXCR4 chemokine receptor in complex with a cyclic peptide antagonist CVX15 , 2010 .

[411]  M. Shinitzky,et al.  The effect of phosphatidylcholine to sphingomyelin mole ratio on the dynamic properties of sheep erythrocyte membrane. , 1977, Biochimica et biophysica acta.

[412]  Catherine Etchebest,et al.  A new prediction strategy for long local protein structures using an original description , 2009, Proteins.

[413]  Syed Shams Yazdani,et al.  Mapping binding residues in the Plasmodium vivax domain that binds Duffy antigen during red cell invasion , 2005, Molecular microbiology.

[414]  S. Segerer,et al.  The Duffy antigen receptor for chemokines transports chemokines and supports their promigratory activity , 2009, Nature Immunology.

[415]  David A. Lee,et al.  Predicting protein function from sequence and structure , 2007, Nature Reviews Molecular Cell Biology.

[416]  George Karypis,et al.  svmPRAT: SVM-based Protein Residue Annotation Toolkit , 2009, BMC Bioinformatics.

[417]  W. Thomas,et al.  Conformational changes induced by ionic strength and pH in two bovine myelin basic proteins. , 1977, Hoppe-Seyler's Zeitschrift fur physiologische Chemie.

[418]  P. Murphy,et al.  Chemokine receptors and molecular mimicry. , 1994, Immunology today.

[419]  C. Anfinsen Principles that govern the folding of protein chains. , 1973, Science.

[420]  H M Berman,et al.  Crystal and molecular structure of a collagen-like peptide at 1.9 A resolution. , 1994, Science.

[421]  A. D. de Brevern,et al.  Assignment of PolyProline II Conformation and Analysis of Sequence – Structure Relationship , 2011, PloS one.

[422]  A. Lewit-Bentley,et al.  EF-hand calcium-binding proteins. , 2000, Current opinion in structural biology.

[423]  A. Mantovani,et al.  β-Arrestin–Dependent Activation of the Cofilin Pathway Is Required for the Scavenging Activity of the Atypical Chemokine Receptor D6 , 2013, Science Signaling.

[424]  P. Tompa,et al.  Fuzzy complexes: polymorphism and structural disorder in protein-protein interactions. , 2008, Trends in biochemical sciences.

[425]  Francis Rodier,et al.  Protein–protein interaction at crystal contacts , 1995, Proteins.

[426]  R. Srinivasan,et al.  A physical basis for protein secondary structure. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[427]  A. Szilágyi,et al.  The twilight zone between protein order and disorder. , 2008, Biophysical journal.

[428]  R. Horuk,et al.  The Duffy antigen/receptor for chemokines (DARC) is expressed in endothelial cells of Duffy negative individuals who lack the erythrocyte receptor , 1995, The Journal of experimental medicine.

[429]  D. T. Jones,et al.  The sequence-structure relationship and protein function prediction. , 2009, Current opinion in structural biology.

[430]  J. Ferreon,et al.  The effect of the polyproline II (PPII) conformation on the denatured state entropy , 2003, Protein science : a publication of the Protein Society.

[431]  C. Chitnis,et al.  A receptor for the malarial parasite Plasmodium vivax: the erythrocyte chemokine receptor. , 1993, Science.

[432]  A. Tobin,et al.  Physiological role of G-protein coupled receptor phosphorylation. , 2012, Handbook of experimental pharmacology.

[433]  R. Nussinov,et al.  Allosteric post-translational modification codes. , 2012, Trends in biochemical sciences.

[434]  A. Zlotnik,et al.  Chemokines: a new classification system and their role in immunity. , 2000, Immunity.

[435]  Kevin Cowtan,et al.  Phase Problem in X‐ray Crystallography, and Its Solution , 2003 .

[436]  Sean J. Humphrey,et al.  Protein Phosphorylation: A Major Switch Mechanism for Metabolic Regulation , 2015, Trends in Endocrinology & Metabolism.

[437]  T. Springer,et al.  B Lymphocyte Chemotaxis Regulated in Association with Microanatomic Localization, Differentiation State, and B Cell Receptor Engagement , 1998, The Journal of experimental medicine.

[438]  A. Rot Contribution of Duffy antigen to chemokine function. , 2005, Cytokine & growth factor reviews.

[439]  Adam Godzik,et al.  Between order and disorder in protein structures: analysis of "dual personality" fragments in proteins. , 2007, Structure.

[440]  Holger Gohlke,et al.  The Amber biomolecular simulation programs , 2005, J. Comput. Chem..

[441]  Gunnar von Heijne,et al.  Proline kinks in transmembrane α-helices☆ , 1991 .