Learning Recursive Functions from Approximations

Investigated is algorithmic learning, in the limit, of correct programs for recursive functions f from both input/output examples of f and several interesting varieties of approximate additional (algorithmic) information about f. Specifically considered, as such approximate additional information about f, are Rose's frequency computations for f and several natural generalizations from the literature, each generalization involving programs for restricted trees of recursive functions which have f as a branch. Considered as the types of trees are those with bounded variation, finite width, and finite rank.

[1]  Carl H. Smith,et al.  Training Sequences , 1989, Theor. Comput. Sci..

[2]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[3]  Benjamin Kuipers,et al.  A Robust, Qualitative Method for Robot Spatial Learning , 1988, AAAI.

[4]  Frank Stephan,et al.  Inclusion Problems in Parallel Learning and Games , 1996, J. Comput. Syst. Sci..

[5]  Amihood Amir,et al.  Polynomial Terse Sets , 1988, Inf. Comput..

[6]  P. Odifreddi Classical recursion theory , 1989 .

[7]  G. Chaitin Program size, oracles, and the jump operation , 1977 .

[8]  Martin Kummer A Proof of Beigel's Cardinality Conjecture , 1992, J. Symb. Log..

[9]  K. Cheng A purely geometric module in the rat's spatial representation , 1986, Cognition.

[10]  Frank Stephan,et al.  Approximable Sets , 1995, Inf. Comput..

[11]  A. Hayashi,et al.  Locating a mobile robot using local observations and a global satellite map , 1988, Proceedings IEEE International Symposium on Intelligent Control 1988.

[12]  Carl H. Smith,et al.  Learning via queries , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.

[13]  Martin Kummer,et al.  On a Quantitative Notion of Uniformity , 1995, MFCS.

[14]  Valentina S. Harizanov,et al.  Frequency Computations and the Cardinality Theorem , 1992, J. Symb. Log..

[15]  John Gill,et al.  Terse, Superterse, and Verbose Sets , 1993, Inf. Comput..

[16]  Martin Kummer,et al.  On a Quantitative Notion of Uniformity , 1996, Fundam. Informaticae.

[17]  Benjamin Kuipers,et al.  Modeling Spatial Knowledge , 1978, IJCAI.

[18]  John Case,et al.  Comparison of Identification Criteria for Machine Inductive Inference , 1983, Theor. Comput. Sci..

[19]  Carl H. Smith,et al.  The Power of Pluralism for Automatic Program Synthesis , 1982, JACM.

[20]  Shirley Dex,et al.  JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .

[21]  Drew McDermott,et al.  Robot Planning , 1991, AI Mag..

[22]  Rusins Freivalds,et al.  Inductive Inference of Recursive Functions: Qualitative Theory , 1991, Baltic Computer Science.

[23]  Rolf Wiehagen,et al.  Inductive Inference with Additional Information , 1979, J. Inf. Process. Cybern..

[24]  C. Gallistel,et al.  Heading in the rat: Determination by environmental shape , 1988 .

[25]  Donald W. Loveland,et al.  A Variant of the Kolmogorov Concept of Complexity , 1969, Information and Control.

[26]  Frank Stephan,et al.  Inclusion problems in parallel learning and games (extended abstract) , 1994, Annual Conference Computational Learning Theory.

[27]  Ming Li,et al.  An Introduction to Kolmogorov Complexity and Its Applications , 2019, Texts in Computer Science.

[28]  永福 智志 The Organization of Learning , 2005, Journal of Cognitive Neuroscience.

[29]  Stuart A. Kurtz,et al.  Extremes in the Degrees of Inferability , 1994, Ann. Pure Appl. Log..

[30]  Frank Stephan,et al.  Quantifying the Amount of Verboseness , 1992, Inf. Comput..

[31]  Rodney A. Brooks,et al.  Real Robots, Real Learning Problems , 1993 .

[32]  Tod S. Levitt,et al.  Qualitative Landmark-based Path Planning and Following , 1987, AAAI.

[33]  Leonard Pitt,et al.  Probabilistic inductive inference , 1989, JACM.

[34]  Maja J. Mataric,et al.  Integration of representation into goal-driven behavior-based robots , 1992, IEEE Trans. Robotics Autom..

[35]  Leslie Pack Kaelbling,et al.  Inferring finite automata with stochastic output functions and an application to map learning , 1992, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).

[36]  James C. Owings,et al.  A cardinality version of Beigel's nonspeedup theorem , 1989, Journal of Symbolic Logic.

[37]  R. Soare Recursively enumerable sets and degrees , 1987 .

[38]  John Case,et al.  Learning with Higher Order Additional Information , 1994, AII/ALT.

[39]  David Haussler,et al.  Learnability and the Vapnik-Chervonenkis dimension , 1989, JACM.

[40]  Carl H. Smith,et al.  Probability and Plurality for Aggregations of Learning Machines , 1988, Inf. Comput..