Learning Recursive Functions from Approximations
暂无分享,去创建一个
John Case | Efim B. Kinber | Martin Kummer | Susanne Kaufmann | E. Kinber | M. Kummer | J. Case | Susanne Kaufmann
[1] Carl H. Smith,et al. Training Sequences , 1989, Theor. Comput. Sci..
[2] P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .
[3] Benjamin Kuipers,et al. A Robust, Qualitative Method for Robot Spatial Learning , 1988, AAAI.
[4] Frank Stephan,et al. Inclusion Problems in Parallel Learning and Games , 1996, J. Comput. Syst. Sci..
[5] Amihood Amir,et al. Polynomial Terse Sets , 1988, Inf. Comput..
[6] P. Odifreddi. Classical recursion theory , 1989 .
[7] G. Chaitin. Program size, oracles, and the jump operation , 1977 .
[8] Martin Kummer. A Proof of Beigel's Cardinality Conjecture , 1992, J. Symb. Log..
[9] K. Cheng. A purely geometric module in the rat's spatial representation , 1986, Cognition.
[10] Frank Stephan,et al. Approximable Sets , 1995, Inf. Comput..
[11] A. Hayashi,et al. Locating a mobile robot using local observations and a global satellite map , 1988, Proceedings IEEE International Symposium on Intelligent Control 1988.
[12] Carl H. Smith,et al. Learning via queries , 1988, [Proceedings 1988] 29th Annual Symposium on Foundations of Computer Science.
[13] Martin Kummer,et al. On a Quantitative Notion of Uniformity , 1995, MFCS.
[14] Valentina S. Harizanov,et al. Frequency Computations and the Cardinality Theorem , 1992, J. Symb. Log..
[15] John Gill,et al. Terse, Superterse, and Verbose Sets , 1993, Inf. Comput..
[16] Martin Kummer,et al. On a Quantitative Notion of Uniformity , 1996, Fundam. Informaticae.
[17] Benjamin Kuipers,et al. Modeling Spatial Knowledge , 1978, IJCAI.
[18] John Case,et al. Comparison of Identification Criteria for Machine Inductive Inference , 1983, Theor. Comput. Sci..
[19] Carl H. Smith,et al. The Power of Pluralism for Automatic Program Synthesis , 1982, JACM.
[20] Shirley Dex,et al. JR 旅客販売総合システム(マルス)における運用及び管理について , 1991 .
[21] Drew McDermott,et al. Robot Planning , 1991, AI Mag..
[22] Rusins Freivalds,et al. Inductive Inference of Recursive Functions: Qualitative Theory , 1991, Baltic Computer Science.
[23] Rolf Wiehagen,et al. Inductive Inference with Additional Information , 1979, J. Inf. Process. Cybern..
[24] C. Gallistel,et al. Heading in the rat: Determination by environmental shape , 1988 .
[25] Donald W. Loveland,et al. A Variant of the Kolmogorov Concept of Complexity , 1969, Information and Control.
[26] Frank Stephan,et al. Inclusion problems in parallel learning and games (extended abstract) , 1994, Annual Conference Computational Learning Theory.
[27] Ming Li,et al. An Introduction to Kolmogorov Complexity and Its Applications , 2019, Texts in Computer Science.
[28] 永福 智志. The Organization of Learning , 2005, Journal of Cognitive Neuroscience.
[29] Stuart A. Kurtz,et al. Extremes in the Degrees of Inferability , 1994, Ann. Pure Appl. Log..
[30] Frank Stephan,et al. Quantifying the Amount of Verboseness , 1992, Inf. Comput..
[31] Rodney A. Brooks,et al. Real Robots, Real Learning Problems , 1993 .
[32] Tod S. Levitt,et al. Qualitative Landmark-based Path Planning and Following , 1987, AAAI.
[33] Leonard Pitt,et al. Probabilistic inductive inference , 1989, JACM.
[34] Maja J. Mataric,et al. Integration of representation into goal-driven behavior-based robots , 1992, IEEE Trans. Robotics Autom..
[35] Leslie Pack Kaelbling,et al. Inferring finite automata with stochastic output functions and an application to map learning , 1992, 26th Annual Symposium on Foundations of Computer Science (sfcs 1985).
[36] James C. Owings,et al. A cardinality version of Beigel's nonspeedup theorem , 1989, Journal of Symbolic Logic.
[37] R. Soare. Recursively enumerable sets and degrees , 1987 .
[38] John Case,et al. Learning with Higher Order Additional Information , 1994, AII/ALT.
[39] David Haussler,et al. Learnability and the Vapnik-Chervonenkis dimension , 1989, JACM.
[40] Carl H. Smith,et al. Probability and Plurality for Aggregations of Learning Machines , 1988, Inf. Comput..