暂无分享,去创建一个
[1] Michael E. Saks,et al. The Efficiency of Resolution and Davis--Putnam Procedures , 2002, SIAM J. Comput..
[2] Bart Selman,et al. Generating Satisfiable Problem Instances , 2000, AAAI/IAAI.
[3] Hector J. Levesque,et al. Hard and Easy Distributions of SAT Problems , 1992, AAAI.
[4] David G. Mitchell,et al. Finding hard instances of the satisfiability problem: A survey , 1996, Satisfiability Problem: Theory and Applications.
[5] Toby Walsh,et al. Easy Problems are Sometimes Hard , 1994, Artif. Intell..
[6] Thomas Stützle,et al. Local Search Algorithms for SAT: An Empirical Evaluation , 2000, Journal of Automated Reasoning.
[7] Marco Cadoli,et al. Compiling Problem Specifications into SAT , 2001, ESOP.
[8] Cristopher Moore,et al. Generating Hard Satisfiable Formulas by Hiding Solutions Deceptively , 2005, AAAI.
[9] Tad Hogg,et al. Exploiting the Deep Structure of Constraint Problems , 1994, Artif. Intell..
[10] S Kirkpatrick,et al. Critical Behavior in the Satisfiability of Random Boolean Expressions , 1994, Science.
[11] Bart Selman,et al. Noise Strategies for Improving Local Search , 1994, AAAI.
[12] Holger H. Hoos,et al. UBCSAT: An Implementation and Experimentation Environment for SLS Algorithms for SAT & MAX-SAT , 2004, SAT.
[13] Rémi Monasson,et al. Determining computational complexity from characteristic ‘phase transitions’ , 1999, Nature.
[14] Olivier Dubois,et al. Typical random 3-SAT formulae and the satisfiability threshold , 2000, SODA '00.
[15] Peter C. Cheeseman,et al. Where the Really Hard Problems Are , 1991, IJCAI.
[16] Holger H. Hoos,et al. An adaptive noise mechanism for walkSAT , 2002, AAAI/IAAI.
[17] Peter W. Shor,et al. Progress in Quantum Algorithms , 2004, Quantum Inf. Process..
[18] Riccardo Zecchina,et al. Hiding solutions in random satisfiability problems: A statistical mechanics approach , 2001, Physical review letters.
[19] Randal E. Bryant,et al. Effective use of Boolean satisfiability procedures in the formal verification of superscalar and VLIW microprocessors , 2001, Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232).
[20] Vladimir Batagelj,et al. Pajek - Analysis and Visualization of Large Networks , 2001, Graph Drawing Software.
[21] James M. Crawford,et al. Experimental Results on the Crossover Point in Random 3-SAT , 1996, Artif. Intell..
[22] Osamu Watanabe,et al. Hard instance generation for SAT , 1998, ArXiv.
[23] Stephen A. Cook,et al. The complexity of theorem-proving procedures , 1971, STOC.
[24] Michael E. Saks,et al. On the complexity of unsatisfiability proofs for random k-CNF formulas , 1998, STOC '98.
[25] James M. Crawford,et al. Experimental Results on the Crossover Point inSatis ability , 1993 .
[26] Toby Walsh,et al. The Satisfiability Constraint Gap , 1996, Artif. Intell..
[27] Martin E. Dyer,et al. Locating the Phase Transition in Binary Constraint Satisfaction Problems , 1996, Artif. Intell..
[28] Efthimios G. Lalas,et al. The probabilistic analysis of a greedy satisfiability algorithm , 2006 .
[29] Henry Kautz,et al. Domain-independant extensions to GSAT : Solving large structured variables , 1993, International Joint Conference on Artificial Intelligence.
[30] Cristopher Moore,et al. Hiding Satisfying Assignments: Two Are Better than One , 2004, AAAI.
[31] Donald W. Loveland,et al. A machine program for theorem-proving , 2011, CACM.
[32] Michael Molloy,et al. A sharp threshold in proof complexity yields lower bounds for satisfiability search , 2004, J. Comput. Syst. Sci..
[33] Holger H. Hoos,et al. Stochastic Local Search-Methods , 1998 .
[34] Roberto J. Bayardo,et al. Using CSP Look-Back Techniques to Solve Exceptionally Hard SAT Instances , 1996, CP.
[35] E. Farhi,et al. A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.
[36] Hilary Putnam,et al. A Computing Procedure for Quantification Theory , 1960, JACM.
[37] Devika Subramanian,et al. Random 3-SAT: The Plot Thickens , 2000, Constraints.
[38] STEPHEN COOK,et al. The P versus NP Problem , 2010, ArXiv.
[39] Hector J. Levesque,et al. A New Method for Solving Hard Satisfiability Problems , 1992, AAAI.
[40] Marko Znidaric. Scaling of the running time of the quantum adiabatic algorithm for propositional satisfiability , 2005 .
[41] Tad Hogg,et al. The Hardest Constraint Problems: A Double Phase Transition , 1994, Artif. Intell..
[42] David S. Johnson,et al. Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .
[43] Monasson,et al. Entropy of the K-satisfiability problem. , 1996, Physical review letters.
[44] Toby Walsh,et al. Local Search and the Number of Solutions , 1996, CP.
[45] Holger H. Hoos,et al. Stochastic local search - methods, models, applications , 1998, DISKI.
[46] M. Mézard,et al. Random K-satisfiability problem: from an analytic solution to an efficient algorithm. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.
[47] Alan Smaill,et al. Backbone Fragility and the Local Search Cost Peak , 2000, J. Artif. Intell. Res..
[48] Tad Hogg,et al. A New Look at the Easy-Hard-Easy Pattern of Combinatorial Search Difficulty , 1997, J. Artif. Intell. Res..
[49] Hector J. Levesque,et al. Generating Hard Satisfiability Problems , 1996, Artif. Intell..
[50] Per Bjesse,et al. Finding Bugs in an Alpha Microprocessor Using Satisfiability Solvers , 2001, CAV.
[51] Hantao Zhang,et al. SATO: An Efficient Propositional Prover , 1997, CADE.