Single-solution Random 3-SAT Instances

We study a class of random 3-SAT instances having exactly one solution. The properties of this ensemble considerably differ from those of a random 3-SAT ensemble. It is numerically shown that the running time of several complete and stochastic local search algorithms monotonically increases as the clause density is decreased. Therefore, there is no easy-hard-easy pattern of hardness as for standard random 3-SAT ensemble. Furthermore, the running time for short single-solution formulas increases with the problem size much faster than for random 3-SAT formulas from the phase transition region.

[1]  Michael E. Saks,et al.  The Efficiency of Resolution and Davis--Putnam Procedures , 2002, SIAM J. Comput..

[2]  Bart Selman,et al.  Generating Satisfiable Problem Instances , 2000, AAAI/IAAI.

[3]  Hector J. Levesque,et al.  Hard and Easy Distributions of SAT Problems , 1992, AAAI.

[4]  David G. Mitchell,et al.  Finding hard instances of the satisfiability problem: A survey , 1996, Satisfiability Problem: Theory and Applications.

[5]  Toby Walsh,et al.  Easy Problems are Sometimes Hard , 1994, Artif. Intell..

[6]  Thomas Stützle,et al.  Local Search Algorithms for SAT: An Empirical Evaluation , 2000, Journal of Automated Reasoning.

[7]  Marco Cadoli,et al.  Compiling Problem Specifications into SAT , 2001, ESOP.

[8]  Cristopher Moore,et al.  Generating Hard Satisfiable Formulas by Hiding Solutions Deceptively , 2005, AAAI.

[9]  Tad Hogg,et al.  Exploiting the Deep Structure of Constraint Problems , 1994, Artif. Intell..

[10]  S Kirkpatrick,et al.  Critical Behavior in the Satisfiability of Random Boolean Expressions , 1994, Science.

[11]  Bart Selman,et al.  Noise Strategies for Improving Local Search , 1994, AAAI.

[12]  Holger H. Hoos,et al.  UBCSAT: An Implementation and Experimentation Environment for SLS Algorithms for SAT & MAX-SAT , 2004, SAT.

[13]  Rémi Monasson,et al.  Determining computational complexity from characteristic ‘phase transitions’ , 1999, Nature.

[14]  Olivier Dubois,et al.  Typical random 3-SAT formulae and the satisfiability threshold , 2000, SODA '00.

[15]  Peter C. Cheeseman,et al.  Where the Really Hard Problems Are , 1991, IJCAI.

[16]  Holger H. Hoos,et al.  An adaptive noise mechanism for walkSAT , 2002, AAAI/IAAI.

[17]  Peter W. Shor,et al.  Progress in Quantum Algorithms , 2004, Quantum Inf. Process..

[18]  Riccardo Zecchina,et al.  Hiding solutions in random satisfiability problems: A statistical mechanics approach , 2001, Physical review letters.

[19]  Randal E. Bryant,et al.  Effective use of Boolean satisfiability procedures in the formal verification of superscalar and VLIW microprocessors , 2001, Proceedings of the 38th Design Automation Conference (IEEE Cat. No.01CH37232).

[20]  Vladimir Batagelj,et al.  Pajek - Analysis and Visualization of Large Networks , 2001, Graph Drawing Software.

[21]  James M. Crawford,et al.  Experimental Results on the Crossover Point in Random 3-SAT , 1996, Artif. Intell..

[22]  Osamu Watanabe,et al.  Hard instance generation for SAT , 1998, ArXiv.

[23]  Stephen A. Cook,et al.  The complexity of theorem-proving procedures , 1971, STOC.

[24]  Michael E. Saks,et al.  On the complexity of unsatisfiability proofs for random k-CNF formulas , 1998, STOC '98.

[25]  James M. Crawford,et al.  Experimental Results on the Crossover Point inSatis ability , 1993 .

[26]  Toby Walsh,et al.  The Satisfiability Constraint Gap , 1996, Artif. Intell..

[27]  Martin E. Dyer,et al.  Locating the Phase Transition in Binary Constraint Satisfaction Problems , 1996, Artif. Intell..

[28]  Efthimios G. Lalas,et al.  The probabilistic analysis of a greedy satisfiability algorithm , 2006 .

[29]  Henry Kautz,et al.  Domain-independant extensions to GSAT : Solving large structured variables , 1993, International Joint Conference on Artificial Intelligence.

[30]  Cristopher Moore,et al.  Hiding Satisfying Assignments: Two Are Better than One , 2004, AAAI.

[31]  Donald W. Loveland,et al.  A machine program for theorem-proving , 2011, CACM.

[32]  Michael Molloy,et al.  A sharp threshold in proof complexity yields lower bounds for satisfiability search , 2004, J. Comput. Syst. Sci..

[33]  Holger H. Hoos,et al.  Stochastic Local Search-Methods , 1998 .

[34]  Roberto J. Bayardo,et al.  Using CSP Look-Back Techniques to Solve Exceptionally Hard SAT Instances , 1996, CP.

[35]  E. Farhi,et al.  A Quantum Adiabatic Evolution Algorithm Applied to Random Instances of an NP-Complete Problem , 2001, Science.

[36]  Hilary Putnam,et al.  A Computing Procedure for Quantification Theory , 1960, JACM.

[37]  Devika Subramanian,et al.  Random 3-SAT: The Plot Thickens , 2000, Constraints.

[38]  STEPHEN COOK,et al.  The P versus NP Problem , 2010, ArXiv.

[39]  Hector J. Levesque,et al.  A New Method for Solving Hard Satisfiability Problems , 1992, AAAI.

[40]  Marko Znidaric Scaling of the running time of the quantum adiabatic algorithm for propositional satisfiability , 2005 .

[41]  Tad Hogg,et al.  The Hardest Constraint Problems: A Double Phase Transition , 1994, Artif. Intell..

[42]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[43]  Monasson,et al.  Entropy of the K-satisfiability problem. , 1996, Physical review letters.

[44]  Toby Walsh,et al.  Local Search and the Number of Solutions , 1996, CP.

[45]  Holger H. Hoos,et al.  Stochastic local search - methods, models, applications , 1998, DISKI.

[46]  M. Mézard,et al.  Random K-satisfiability problem: from an analytic solution to an efficient algorithm. , 2002, Physical review. E, Statistical, nonlinear, and soft matter physics.

[47]  Alan Smaill,et al.  Backbone Fragility and the Local Search Cost Peak , 2000, J. Artif. Intell. Res..

[48]  Tad Hogg,et al.  A New Look at the Easy-Hard-Easy Pattern of Combinatorial Search Difficulty , 1997, J. Artif. Intell. Res..

[49]  Hector J. Levesque,et al.  Generating Hard Satisfiability Problems , 1996, Artif. Intell..

[50]  Per Bjesse,et al.  Finding Bugs in an Alpha Microprocessor Using Satisfiability Solvers , 2001, CAV.

[51]  Hantao Zhang,et al.  SATO: An Efficient Propositional Prover , 1997, CADE.