Effects of dendritic morphology on CA3 pyramidal cell electrophysiology: a simulation study

[1]  Roger D. Traub,et al.  Simulation of Gamma Rhythms in Networks of Interneurons and Pyramidal Cells , 1997, Journal of Computational Neuroscience.

[2]  John Rinzel,et al.  Intrinsic and network rhythmogenesis in a reduced traub model for CA3 neurons , 1995, Journal of Computational Neuroscience.

[3]  Daniel Johnston,et al.  Endogenous nature of spontaneous bursting in hippocampal pyramidal neurons , 1981, Cellular and Molecular Neurobiology.

[4]  James L. Winslow,et al.  Signals in Stochastically Generated Neurons , 2004, Journal of Computational Neuroscience.

[5]  Jürgen Symanzik,et al.  Visual Data Mining of Brain Cells , 2002 .

[6]  Arjen van Ooyen,et al.  Influence of dendritic topology on firing patterns in model neurons , 2001, Neurocomputing.

[7]  M. Häusser,et al.  Propagation of action potentials in dendrites depends on dendritic morphology. , 2001, Journal of neurophysiology.

[8]  Jeffrey L. Krichmar,et al.  A statistical analysis of dendritic morphology's effect on neuron electrophysiology of CA3 pyramidal cells , 2000, Neurocomputing.

[9]  B. Richmond,et al.  Intrinsic dynamics in neuronal networks. II. experiment. , 2000, Journal of neurophysiology.

[10]  B. Richmond,et al.  Intrinsic dynamics in neuronal networks. I. Theory. , 2000, Journal of neurophysiology.

[11]  A. Zador,et al.  Neural representation and the cortical code. , 2000, Annual review of neuroscience.

[12]  G A Ascoli,et al.  Progress and perspectives in computational neuroanatomy , 1999, The Anatomical record.

[13]  D. Jaffe,et al.  Passive normalization of synaptic integration influenced by dendritic architecture. , 1999, Journal of neurophysiology.

[14]  Alexander Borst,et al.  Information theory and neural coding , 1999, Nature Neuroscience.

[15]  R. Nicoll,et al.  Long-term potentiation--a decade of progress? , 1999, Science.

[16]  G. Turrigiano Homeostatic plasticity in neuronal networks: the more things change, the more they stay the same , 1999, Trends in Neurosciences.

[17]  L H Finkel,et al.  Cholinergic neuromodulation and Alzheimer's disease: from single cells to network simulations. , 1999, Progress in brain research.

[18]  Lyle J. Borg-Graham,et al.  Interpretations of Data and Mechanisms for Hippocampal Pyramidal Cell Models , 1999 .

[19]  R. C Cannon,et al.  An on-line archive of reconstructed hippocampal neurons , 1998, Journal of Neuroscience Methods.

[20]  Leif H. Finkel,et al.  Neuromodulatory control of hippocampal function: towards a model of Alzheimer's disease , 1998, Artif. Intell. Medicine.

[21]  K. Tóth,et al.  Target-specific expression of presynaptic mossy fiber plasticity. , 1998, Science.

[22]  T. W. Berger,et al.  Spatial Distribution of Potentiated Synapses in Hippocampus: Dependence on Cellular Mechanisms and Network Properties , 1998, The Journal of Neuroscience.

[23]  M. Hasselmo,et al.  Free recall and recognition in a network model of the hippocampus: simulating effects of scopolamine on human memory function , 1997, Behavioural Brain Research.

[24]  R. Traub,et al.  Spatiotemporal patterns of γ frequency oscillations tetanically induced in the rat hippocampal slice , 1997 .

[25]  N T Carnevale,et al.  Comparative electrotonic analysis of three classes of rat hippocampal neurons. , 1997, Journal of neurophysiology.

[26]  Y. Yaari,et al.  Role of intrinsic burst firing, potassium accumulation, and electrical coupling in the elevated potassium model of hippocampal epilepsy. , 1997, Journal of neurophysiology.

[27]  J. Lisman Bursts as a unit of neural information: making unreliable synapses reliable , 1997, Trends in Neurosciences.

[28]  G. Buzsáki,et al.  Gamma Oscillation by Synaptic Inhibition in a Hippocampal Interneuronal Network Model , 1996, The Journal of Neuroscience.

[29]  T. Sejnowski,et al.  [Letters to nature] , 1996, Nature.

[30]  D. Amaral,et al.  A quantitative analysis of the dendritic organization of pyramidal cells in the rat hippocampus , 1995, The Journal of comparative neurology.

[31]  J. Lambert,et al.  The excitability of CA1 pyramidal cell dendrites is modulated by a local Ca2+-dependent K+-conductance , 1995, Brain Research.

[32]  R. Nicoll,et al.  Contrasting properties of two forms of long-term potentiation in the hippocampus , 1995, Nature.

[33]  D A Turner,et al.  Morphometric and electrical properties of reconstructed hippocampal CA3 neurons recorded in vivo , 1995, The Journal of comparative neurology.

[34]  J. Lambert,et al.  Regenerative properties of pyramidal cell dendrites in area CA1 of the rat hippocampus. , 1995, The Journal of physiology.

[35]  R. Traub,et al.  Synchronized oscillations in interneuron networks driven by metabotropic glutamate receptor activation , 1995, Nature.

[36]  M Migliore,et al.  Computer simulations of morphologically reconstructed CA3 hippocampal neurons. , 1995, Journal of neurophysiology.

[37]  James M. Bower,et al.  The Book of GENESIS , 1994, Springer New York.

[38]  R. Traub,et al.  A branching dendritic model of a rodent CA3 pyramidal neurone. , 1994, The Journal of physiology.

[39]  R. Nicoll,et al.  Mediation of hippocampal mossy fiber long-term potentiation by cyclic AMP. , 1994, Science.

[40]  Y. Yaari,et al.  Variant firing patterns in rat hippocampal pyramidal cells modulated by extracellular potassium. , 1994, Journal of neurophysiology.

[41]  J E Lisman,et al.  A model for dendritic Ca2+ accumulation in hippocampal pyramidal neurons based on fluorescence imaging measurements. , 1994, Journal of neurophysiology.

[42]  P. Somogyi,et al.  The hippocampal CA3 network: An in vivo intracellular labeling study , 1994, The Journal of comparative neurology.

[43]  E. Vaadia,et al.  Spatiotemporal firing patterns in the frontal cortex of behaving monkeys. , 1993, Journal of neurophysiology.

[44]  H. Scharfman Spiny neurons of area CA3c in rat hippocampal slices have similar electrophysiological characteristics and synaptic responses despite morphological variation , 1993, Hippocampus.

[45]  J. van Pelt,et al.  Tree asymmetry--a sensitive and practical measure for binary topological trees. , 1992, Bulletin of mathematical biology.

[46]  R. Traub,et al.  A model of a CA3 hippocampal pyramidal neuron incorporating voltage-clamp data on intrinsic conductances. , 1991, Journal of neurophysiology.

[47]  A. Larkman,et al.  Correlations between morphology and electrophysiology of pyramidal neurons in slices of rat visual cortex. I. Establishment of cell classes , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[48]  A. Larkman,et al.  Correlations between morphology and electrophysiology of pyramidal neurons in slices of rat visual cortex. II. Electrophysiology , 1990, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[49]  David K. Bilkey,et al.  Variation in electrophysiology and morphology of hippocampal CA3 pyramidal cells , 1990, Brain Research.

[50]  William Bialek,et al.  Coding and computation with neural spike trains , 1990 .

[51]  Daniel Johnston,et al.  Long-term potentiation of hippocampal mossy fiber synapses is blocked by postsynaptic injection of calcium chelators , 1989, Neuron.

[52]  A. P. Georgopoulos,et al.  Neuronal population coding of movement direction. , 1986, Science.

[53]  R. Ranney Mize,et al.  The Microcomputer in Cell and Neurobiology Research , 1985 .

[54]  D. Prince,et al.  Variations in electrophysiological properties of hippocampal neurons in different subfields , 1982, Brain Research.

[55]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.