High-resolution Xist binding maps reveal 2-step spreading during X-inactivation

[1]  E. Lander,et al.  The Xist lncRNA Exploits Three-Dimensional Genome Architecture to Spread Across the X Chromosome , 2013, Science.

[2]  Bas van Steensel,et al.  Genome Architecture: Domain Organization of Interphase Chromosomes , 2013, Cell.

[3]  Eda Yildirim,et al.  Xist RNA Is a Potent Suppressor of Hematologic Cancer in Mice , 2013, Cell.

[4]  Helga Thorvaldsdóttir,et al.  Integrative Genomics Viewer (IGV): high-performance genomics data visualization and exploration , 2012, Briefings Bioinform..

[5]  M. Tolstorukov,et al.  Multiplexed Illumina sequencing libraries from picogram quantities of DNA , 2013, BMC Genomics.

[6]  Cole Trapnell,et al.  TopHat2: accurate alignment of transcriptomes in the presence of insertions, deletions and gene fusions , 2013, Genome Biology.

[7]  Jeannie T. Lee Epigenetic Regulation by Long Noncoding RNAs , 2012, Science.

[8]  Wei Sun,et al.  Site-Specific Silencing of Regulatory Elements as a Mechanism of X Inactivation , 2012, Cell.

[9]  C. Disteche Dosage compensation of the sex chromosomes. , 2012, Annual review of genetics.

[10]  Jesse R. Dixon,et al.  Topological Domains in Mammalian Genomes Identified by Analysis of Chromatin Interactions , 2012, Nature.

[11]  Toshiro K. Ohsumi,et al.  Spreading of X chromosome inactivation via a hierarchy of defined Polycomb stations , 2012, Genome research.

[12]  Jeannie T. Lee,et al.  X-chromosome hyperactivation in mammals via nonlinear relationships between chromatin states and transcription , 2011, Nature Structural &Molecular Biology.

[13]  Brad A Chapman,et al.  The genomic binding sites of a noncoding RNA , 2011, Proceedings of the National Academy of Sciences.

[14]  Thomas M. Keane,et al.  Mouse genomic variation and its effect on phenotypes and gene regulation , 2011, Nature.

[15]  A. Wutz Gene silencing in X-chromosome inactivation: advances in understanding facultative heterochromatin formation , 2011, Nature Reviews Genetics.

[16]  David M. Umbach,et al.  Efficiently identifying genome-wide changes with next-generation sequencing data , 2011, Nucleic acids research.

[17]  Jeannie T. Lee,et al.  YY1 Tethers Xist RNA to the Inactive X Nucleation Center , 2011, Cell.

[18]  W. V. van IJcken,et al.  The inactive X chromosome adopts a unique three-dimensional conformation that is dependent on Xist RNA. , 2011, Genes & development.

[19]  J. Gribnau,et al.  Xist regulation and function eXplored , 2011, Human Genetics.

[20]  C. Disteche,et al.  Genes that escape from X inactivation , 2011, Human Genetics.

[21]  J. Stamatoyannopoulos,et al.  Chromatin accessibility pre-determines glucocorticoid receptor binding patterns , 2011, Nature Genetics.

[22]  Mary Goldman,et al.  The UCSC Genome Browser database: update 2011 , 2010, Nucleic Acids Res..

[23]  Jeannie T. Lee,et al.  Locked nucleic acids (LNAs) reveal sequence requirements and kinetics of Xist RNA localization to the X chromosome , 2010, Proceedings of the National Academy of Sciences.

[24]  Serafim Batzoglou,et al.  Identifying a High Fraction of the Human Genome to be under Selective Constraint Using GERP++ , 2010, PLoS Comput. Biol..

[25]  P. Flicek,et al.  Molecular maps of the reorganization of genome-nuclear lamina interactions during differentiation. , 2010, Molecular cell.

[26]  Tao Liu,et al.  CEAS: cis-regulatory element annotation system , 2009, Bioinform..

[27]  Edith Heard,et al.  High-resolution analysis of epigenetic changes associated with X inactivation. , 2009, Genome research.

[28]  Jeannie T. Lee,et al.  Polycomb Proteins Targeted by a Short Repeat RNA to the Mouse X Chromosome , 2008, Science.

[29]  P. Park,et al.  Design and analysis of ChIP-seq experiments for DNA-binding proteins , 2008, Nature Biotechnology.

[30]  Dirk Schübeler,et al.  Global Reorganization of Replication Domains During Embryonic Stem Cell Differentiation , 2008, PLoS biology.

[31]  Jeannie T. Lee,et al.  Intersection of the RNA Interference and X-Inactivation Pathways , 2008, Science.

[32]  David Haussler,et al.  The UCSC genome browser database: update 2007 , 2006, Nucleic Acids Res..

[33]  Jun Song,et al.  CEAS: cis-regulatory element annotation system , 2006, Nucleic Acids Res..

[34]  Terrence S. Furey,et al.  The UCSC Genome Browser Database: update 2006 , 2005, Nucleic Acids Res..

[35]  Henrik Bjørn Nielsen,et al.  OligoWiz 2.0—integrating sequence feature annotation into the design of microarray probes , 2005, Nucleic Acids Res..

[36]  H. Willard,et al.  X-inactivation profile reveals extensive variability in X-linked gene expression in females , 2005, Nature.

[37]  Huntington F Willard,et al.  Multiple spatially distinct types of facultative heterochromatin on the human inactive X chromosome. , 2004, Proceedings of the National Academy of Sciences of the United States of America.

[38]  Anton Wutz,et al.  A Chromosomal Memory Triggered by Xist Regulates Histone Methylation in X Inactivation , 2004, PLoS biology.

[39]  M. Lyon The Lyon and the LINE hypothesis. , 2003, Seminars in cell & developmental biology.

[40]  H. Willard,et al.  Chromatin of the Barr body: histone and non-histone proteins associated with or excluded from the inactive X chromosome. , 2003, Human molecular genetics.

[41]  Rudolf Jaenisch,et al.  Chromosomal silencing and localization are mediated by different domains of Xist RNA , 2002, Nature Genetics.

[42]  N. Brockdorff,et al.  Xist RNA exhibits a banded localization on the inactive X chromosome and is excluded from autosomal material in cis. , 1999, Human molecular genetics.

[43]  J. Mcneil,et al.  XIST RNA paints the inactive X chromosome at interphase: evidence for a novel RNA involved in nuclear/chromosome structure , 1996, The Journal of cell biology.

[44]  Dominic P. Norris,et al.  The product of the mouse Xist gene is a 15 kb inactive X-specific transcript containing no conserved ORF and located in the nucleus , 1992, Cell.

[45]  Carolyn J. Brown,et al.  The human XIST gene: Analysis of a 17 kb inactive X-specific RNA that contains conserved repeats and is highly localized within the nucleus , 1992, Cell.

[46]  G. Buchman,et al.  Differential incorporation of biotinylated nucleotides by terminal deoxynucleotidyl transferase. , 1992, Nucleic acids research.