Linear Convergence of Comparison-based Step-size Adaptive Randomized Search via Stability of Markov Chains

In this paper, we consider \emph{comparison-based} adaptive stochastic algorithms for solving numerical optimisation problems. We consider a specific subclass of algorithms called \cprs (CB-SARS), where the state variables at a given iteration are a vector of the search space and a positive parameter, the step-size, typically controlling the overall standard deviation of the underlying search distribution. We investigate the \emph{linear} convergence of CB-SARS on \emph{scaling-invariant} objective functions. Scaling-invariant functions preserve the ordering of points with respect to their function value when the points are scaled with the same positive parameter (the scaling is done w.r.t.\ a fixed reference point). This class of functions includes norms composed with strictly increasing functions as well as many \emph{non quasi-convex} and \emph{non-continuous} functions. On scaling-invariant functions, we show the existence of a homogeneous Markov chain, as a consequence of natural invariance properties of CB-SARS (essentially scale-invariance and invariance to strictly increasing transformation of the objective function). We then derive sufficient conditions for \emph{global linear convergence} of CB-SARS, expressed in terms of different stability conditions of the normalised homogeneous Markov chain (irreducibility, positivity, Harris recurrence, geometric ergodicity) and thus define a general methodology for proving global linear convergence of CB-SARS algorithms on scaling-invariant functions. As a by-product we provide a connexion between \emph{comparison-based} adaptive stochastic algorithms and Markov chain Monte Carlo algorithms.

[1]  Anne Auger,et al.  Analyzing the impact of mirrored sampling and sequential selection in elitist evolution strategies , 2011, FOGA '11.

[2]  Anne Auger,et al.  How to Assess Step-Size Adaptation Mechanisms in Randomised Search , 2014, PPSN.

[3]  Jeffrey C. Lagarias,et al.  Convergence of the Restricted Nelder-Mead Algorithm in Two Dimensions , 2011, SIAM J. Optim..

[4]  Hans-Georg Beyer,et al.  The Theory of Evolution Strategies , 2001, Natural Computing Series.

[5]  K. Steiglitz,et al.  Adaptive step size random search , 1968 .

[6]  Olivier François,et al.  Global convergence for evolution strategies in spherical problems: some simple proofs and difficulties , 2003, Theor. Comput. Sci..

[7]  Anne Auger,et al.  Mirrored sampling in evolution strategies with weighted recombination , 2011, GECCO '11.

[8]  Anne Auger,et al.  Linear Convergence on Positively Homogeneous Functions of a Comparison Based Step-Size Adaptive Randomized Search: the (1+1) ES with Generalized One-fifth Success Rule , 2013, ArXiv.

[9]  Youhei Akimoto,et al.  Convergence of the Continuous Time Trajectories of Isotropic Evolution Strategies on Monotonic C^2-composite Functions , 2012 .

[10]  V. Torczon,et al.  RANK ORDERING AND POSITIVE BASES IN PATTERN SEARCH ALGORITHMS , 1996 .

[11]  Nikolaus Hansen,et al.  Completely Derandomized Self-Adaptation in Evolution Strategies , 2001, Evolutionary Computation.

[12]  Nikolaus Hansen,et al.  On the Adaptation of Arbitrary Normal Mutation Distributions in Evolution Strategies: The Generating Set Adaptation , 1995, ICGA.

[13]  Anne Auger,et al.  Comparing results of 31 algorithms from the black-box optimization benchmarking BBOB-2009 , 2010, GECCO '10.

[14]  M. Powell The NEWUOA software for unconstrained optimization without derivatives , 2006 .

[15]  Isao Ono,et al.  Bidirectional Relation between CMA Evolution Strategies and Natural Evolution Strategies , 2010, PPSN.

[16]  Petros Koumoutsakos,et al.  Learning probability distributions in continuous evolutionary algorithms – a comparative review , 2004, Natural Computing.

[17]  Anne Auger,et al.  Cumulative Step-Size Adaptation on Linear Functions , 2012, PPSN.

[18]  Robert Hooke,et al.  `` Direct Search'' Solution of Numerical and Statistical Problems , 1961, JACM.

[19]  H. Kushner,et al.  Stochastic Approximation and Recursive Algorithms and Applications , 2003 .

[20]  Anne Auger,et al.  Information-Geometric Optimization Algorithms: A Unifying Picture via Invariance Principles , 2011, J. Mach. Learn. Res..

[21]  Ohad Shamir,et al.  On the Complexity of Bandit and Derivative-Free Stochastic Convex Optimization , 2012, COLT.

[22]  C. D. Gelatt,et al.  Optimization by Simulated Annealing , 1983, Science.

[23]  Tom Schaul,et al.  Exponential natural evolution strategies , 2010, GECCO '10.

[24]  Jens Jägersküpper Lower Bounds for Hit-and-Run Direct Search , 2007, SAGA.

[25]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[26]  Anne Auger,et al.  Principled Design of Continuous Stochastic Search: From Theory to Practice , 2014, Theory and Principled Methods for the Design of Metaheuristics.

[27]  Christian L. Müller,et al.  Variable metric random pursuit , 2012, Math. Program..

[28]  A. Zhigljavsky Stochastic Global Optimization , 2008, International Encyclopedia of Statistical Science.

[29]  A. Auger Convergence results for the ( 1 , )-SA-ES using the theory of-irreducible Markov chains , 2005 .

[30]  Dirk V. Arnold,et al.  Weighted multirecombination evolution strategies , 2006, Theor. Comput. Sci..

[31]  Anne Auger,et al.  Convergence of the Continuous Time Trajectories of Isotropic Evolution Strategies on Monotonic $\mathcal C^2$ -composite Functions , 2012, PPSN.

[32]  Nikolaus Hansen,et al.  An Analysis of Mutative -Self-Adaptation on Linear Fitness Functions , 2006, Evolutionary Computation.

[33]  Robert D. Nowak,et al.  Query Complexity of Derivative-Free Optimization , 2012, NIPS.

[34]  P. Deuflhard Newton Methods for Nonlinear Problems: Affine Invariance and Adaptive Algorithms , 2011 .

[35]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[36]  Richard L. Tweedie,et al.  Markov Chains and Stochastic Stability , 1993, Communications and Control Engineering Series.

[37]  H. P. Schwefel,et al.  Numerische Optimierung von Computermodellen mittels der Evo-lutionsstrategie , 1977 .

[38]  Jens Jägersküpper,et al.  Algorithmic analysis of a basic evolutionary algorithm for continuous optimization , 2007, Theor. Comput. Sci..

[39]  Yurii Nesterov,et al.  Random Gradient-Free Minimization of Convex Functions , 2015, Foundations of Computational Mathematics.

[40]  R. Rubinstein The Cross-Entropy Method for Combinatorial and Continuous Optimization , 1999 .

[41]  Dipl. Ing. Karl Heinz Kellermayer NUMERISCHE OPTIMIERUNG VON COMPUTER-MODELLEN MITTELS DER EVOLUTIONSSTRATEGIE Hans-Paul Schwefel Birkhäuser, Basel and Stuttgart, 1977 370 pages Hardback SF/48 ISBN 3-7643-0876-1 , 1977 .

[42]  Jeffrey C. Lagarias,et al.  Convergence Properties of the Nelder-Mead Simplex Method in Low Dimensions , 1998, SIAM J. Optim..

[43]  S. Marcus,et al.  The structure of nonlinear control systems possessing symmetries , 1985 .

[44]  K. I. M. McKinnon,et al.  Convergence of the Nelder-Mead Simplex Method to a Nonstationary Point , 1998, SIAM J. Optim..

[45]  Lars Taxén,et al.  Stochastic optimization in system design , 1981 .

[46]  Charles Audet,et al.  Analysis of Generalized Pattern Searches , 2000, SIAM J. Optim..

[47]  Christian L. Müller,et al.  Optimization of Convex Functions with Random Pursuit , 2011, SIAM J. Optim..

[48]  V. Borkar Stochastic Approximation: A Dynamical Systems Viewpoint , 2008 .

[49]  O. SIAMJ.,et al.  ON THE CONVERGENCE OF PATTERN SEARCH ALGORITHMS , 1997 .

[50]  Hans-Paul Schwefel,et al.  Evolution strategies – A comprehensive introduction , 2002, Natural Computing.

[51]  Jens Jägersküpper,et al.  Rigorous Runtime Analysis of the (1+1) ES: 1/5-Rule and Ellipsoidal Fitness Landscapes , 2005, FOGA.

[52]  Anne Auger,et al.  Log-Linear Convergence and Divergence of the Scale-Invariant (1+1)-ES in Noisy Environments , 2011, Algorithmica.

[53]  Anne Auger,et al.  Mirrored Sampling and Sequential Selection for Evolution Strategies , 2010, PPSN.

[54]  Ingo Rechenberg,et al.  Evolutionsstrategie '94 , 1994, Werkstatt Bionik und Evolutionstechnik.