Operator Dynamics Consideration for Less Conservative Coupled Stability Condition in Bilateral Teleoperation

Bilateral teleoperation control systems are designed for guaranteed stability against uncertainties in operator and environment dynamics. In this paper, we study the effect of human operator dynamics on the coupled stability by incorporating the operator dynamics in the master-slave network. We will analytically prove and graphically show that for any potentially unstable control architecture, as the operator minimum damping grows, the teleoperation system can stably tolerate a larger range of variations in the environment impedance parameters. More importantly, we will demonstrate how the proposed coupled stability analysis method can be utilized to design stabilizing controllers for enhanced transparency, given a priori knowledge or online estimate of human operator damping.

[1]  Simon S. Haykin,et al.  Active Network Theory. , 1970 .

[2]  J. Houk,et al.  Nonlinear viscosity of human wrist. , 1984, Journal of neurophysiology.

[3]  E. Bizzi,et al.  Neural, mechanical, and geometric factors subserving arm posture in humans , 1985, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[4]  Neville Hogan,et al.  Robust control of dynamically interacting systems , 1988 .

[5]  Blake Hannaford,et al.  Experimental and simulation studies of hard contact in force reflecting teleoperation , 1988, Proceedings. 1988 IEEE International Conference on Robotics and Automation.

[6]  L Stark,et al.  An analysis of the sources of musculoskeletal system impedance. , 1988, Journal of biomechanics.

[7]  Neville Hogan,et al.  Controlling impedance at the man/machine interface , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[8]  Mark W. Spong,et al.  Bilateral control of teleoperators with time delay , 1989 .

[9]  M. L. Edwards,et al.  A new criterion for linear 2-port stability using a single geometrically derived parameter , 1992 .

[10]  J. Edward Colgate,et al.  Robust impedance shaping telemanipulation , 1993, IEEE Trans. Robotics Autom..

[11]  Dale A. Lawrence Stability and transparency in bilateral teleoperation , 1993, IEEE Trans. Robotics Autom..

[12]  Mark L. Nagurka,et al.  Dynamic and loaded impedance components in the maintenance of human arm posture , 1993, IEEE Trans. Syst. Man Cybern..

[13]  Septimiu E. Salcudean,et al.  Adaptive transparent impedance reflecting teleoperation , 1996, Proceedings of IEEE International Conference on Robotics and Automation.

[14]  J. Edward Colgate,et al.  Passivity of a class of sampled-data systems: Application to haptic interfaces , 1997, J. Field Robotics.

[15]  H. Gomi,et al.  Task-Dependent Viscoelasticity of Human Multijoint Arm and Its Spatial Characteristics for Interaction with Environments , 1998, The Journal of Neuroscience.

[16]  Luis F. Peñín,et al.  Force reflection for ground control of Space robots , 2000, IEEE Robotics Autom. Mag..

[17]  Septimiu E. Salcudean,et al.  Analysis of Control Architectures for Teleoperation Systems with Impedance/Admittance Master and Slave Manipulators , 2001, Int. J. Robotics Res..

[18]  M. Zefran,et al.  A notion of passivity for hybrid systems , 2001, Proceedings of the 40th IEEE Conference on Decision and Control (Cat. No.01CH37228).

[19]  Alana Sherman,et al.  Design of bilateral teleoperation controllers for haptic exploration and telemanipulation of soft environments , 2002, IEEE Trans. Robotics Autom..

[20]  Blake Hannaford,et al.  Control law design for haptic interfaces to virtual reality , 2002, IEEE Trans. Control. Syst. Technol..

[21]  Russell H. Taylor,et al.  Medical robotics in computer-integrated surgery , 2003, IEEE Trans. Robotics Autom..

[22]  Angel Rubio,et al.  Transparent telemanipulation in the presence of time delay , 2003, Proceedings 2003 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM 2003).

[23]  David W. L. Wang,et al.  A Gain-Switching Control Scheme for Position-Error-Based Bilateral Teleoperation: Contact Stability Analysis and Controller Design , 2004, Int. J. Robotics Res..

[24]  Jean-Jacques E. Slotine,et al.  Telemanipulation with Time Delays , 2004, Int. J. Robotics Res..

[25]  Toshio Tsuji,et al.  Human hand impedance characteristics during maintained posture , 1995, Biological Cybernetics.

[26]  T. Flash,et al.  The control of hand equilibrium trajectories in multi-joint arm movements , 1987, Biological Cybernetics.

[27]  B. Hannaford,et al.  Stable teleoperation with time-domain passivity control , 2004, IEEE Transactions on Robotics and Automation.

[28]  Keng Peng Tee,et al.  A model of force and impedance in human arm movements , 2004, Biological Cybernetics.

[29]  Angel Rubio,et al.  Stability analysis of a 1 DOF haptic interface using the Routh-Hurwitz criterion , 2004, IEEE Transactions on Control Systems Technology.

[30]  Yoshiyuki Tanaka,et al.  Analysis of mechanical impedance in human arm movements using a virtual tennis system , 2004, Biological Cybernetics.

[31]  Jong Hyeon Park,et al.  Impedance Control with Variable Damping for Bilateral Teleoperation under Time Delay , 2005 .

[32]  Michael Goldfarb,et al.  Modeling the human hand as it interacts with a telemanipulation system , 2005 .

[33]  K. Hashtrudi-Zaad,et al.  A Method for Online Estimation of Human Arm Dynamics , 2006, 2006 International Conference of the IEEE Engineering in Medicine and Biology Society.

[34]  Y. Nakamura,et al.  Identification of human musculo-tendon subject specific dynamics using musculo-skeletal computations and non linear least square , 2006, The First IEEE/RAS-EMBS International Conference on Biomedical Robotics and Biomechatronics, 2006. BioRob 2006..

[35]  Mark W. Spong,et al.  Bilateral teleoperation: An historical survey , 2006, Autom..

[36]  P. Abolmaesumi,et al.  A Framework for the Design of a Novel Haptic-based Medical Diagnostic Simulator , 2006 .

[37]  Stephen P. Buerger,et al.  Complementary Stability and Loop Shaping for Improved Human–Robot Interaction , 2007, IEEE Transactions on Robotics.

[38]  Frans C. T. van der Helm,et al.  The Low-Stiffness Teleoperator Slave — a Trade-off between Stability and Performance , 2007, Int. J. Robotics Res..

[39]  Thomas Hulin,et al.  Stability boundary for haptic rendering: Influence of human operator , 2008, 2008 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[40]  G.R. Sutherland,et al.  Human–Machine Interface for Robotic Surgery and Stereotaxy , 2008, IEEE/ASME Transactions on Mechatronics.

[41]  Purang Abolmaesumi,et al.  A Framework for the Design of a Novel Haptic-Based Medical Training Simulator , 2008, IEEE Transactions on Information Technology in Biomedicine.

[42]  Keyvan Hashtrudi-Zaad,et al.  Least conservative robust stability condition for linear bilateral teleoperation control systems , 2009, World Haptics 2009 - Third Joint EuroHaptics conference and Symposium on Haptic Interfaces for Virtual Environment and Teleoperator Systems.

[43]  Robert Richardson,et al.  A Control Strategy for Upper Limb Robotic Rehabilitation With a Dual Robot System , 2010, IEEE/ASME Transactions on Mechatronics.

[44]  Martin Buss,et al.  A Survey of Environment-, Operator-, and Task-adapted Controllers for Teleoperation Systems , 2010 .

[45]  Jee-Hwan Ryu,et al.  Time Domain Passivity Control for Position-Position Teleoperation Architectures , 2010, PRESENCE: Teleoperators and Virtual Environments.

[46]  Keyvan Hashtrudi-Zaad,et al.  Stability analysis of haptic interfaces for different types of sampled signals and virtual environment implementations , 2010, 2010 IEEE Haptics Symposium.

[47]  Murat Cenk Cavusoglu,et al.  Three-dimensional human arm and hand dynamics and variability model for a stylus-based haptic interface , 2010, 2010 IEEE International Conference on Robotics and Automation.

[48]  Panagiotis K. Artemiadis,et al.  Human arm impedance: Characterization and modeling in 3D space , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[49]  Keyvan Hashtrudi-Zaad,et al.  Bounded-Impedance Absolute Stability of Bilateral Teleoperation Control Systems , 2010, IEEE Transactions on Haptics.

[50]  Doo Yong Lee,et al.  Exploitation of the Impedance and Characteristics of the Human Arm in the Design of Haptic Interfaces , 2011, IEEE Transactions on Industrial Electronics.

[51]  Dominiek Reynaerts,et al.  A mechatronic analysis of the classical position-force controller based on bounded environment passivity , 2011, Int. J. Robotics Res..

[52]  Mahdi Tavakoli,et al.  A passivity criterion for sampled-data bilateral teleoperation systems , 2011, 2011 IEEE World Haptics Conference.

[53]  Keyvan Hashtrudi-Zaad,et al.  Dual-User Teleoperation Systems: New Multilateral Shared Control Architecture and Kinesthetic Performance Measures , 2012, IEEE/ASME Transactions on Mechatronics.

[54]  Carsten W. Scherer,et al.  Stability Analysis for Bilateral Teleoperation: An IQC Formulation , 2012, IEEE Transactions on Robotics.

[55]  O. Kaynak,et al.  Asymptotic stability and stabilisation of uncertain delta operator systems with time-varying delays , 2013 .

[56]  Keyvan Hashtrudi-Zaad,et al.  A Framework for Unconditional Stability Analysis of Multimaster/Multislave Teleoperation Systems , 2013, IEEE Transactions on Robotics.

[57]  Antonio Barreiro,et al.  Generic Approach to Stability Under Time-Varying Delay in Teleoperation: Application to the Position-Error Control of a Gantry Crane , 2013, IEEE/ASME Transactions on Mechatronics.

[58]  Robert J. Webster,et al.  A Telerobotic System for Transnasal Surgery , 2014, IEEE/ASME Transactions on Mechatronics.

[59]  Steven X. Ding,et al.  A Review on Basic Data-Driven Approaches for Industrial Process Monitoring , 2014, IEEE Transactions on Industrial Electronics.

[60]  Keyvan Hashtrudi-Zaad,et al.  Analysis of Coupled Stability in Multilateral Dual-User Teleoperation Systems , 2014, IEEE Transactions on Robotics.

[61]  Huijun Gao,et al.  Data-Based Techniques Focused on Modern Industry: An Overview , 2015, IEEE Transactions on Industrial Electronics.