Using Human Neuroimaging to Examine Top-down Modulation of Visual Perception

Both univariate and multivariate analysis methods largely have focused on characterizing how measurements from neural firing rates, EEG electrodes, or fMRI voxels change as a function of stimulus parameters or task demands –they focus on characterizing changes in neural signals. However, in cognitive neuroscience we are often interested in how these changes in neural signals collectively modify representations of information. We compare methods whereby activation patterns across entire brain regions can be used to reconstruct representations of information to more traditional univariate and multivariate analysis approaches. We highlight findings using these methods, focusing on how a representation-based analysis approach yields novel insights into how information is encoded, maintained and manipulated under various task demands.

[1]  T. Albright Direction and orientation selectivity of neurons in visual area MT of the macaque. , 1984, Journal of neurophysiology.

[2]  R. Kakigi,et al.  Visual motion direction is represented in population-level neural response as measured by magnetoencephalography , 2009, Neuroscience.

[3]  R. Gattass,et al.  Cortical visual areas in monkeys: location, topography, connections, columns, plasticity and cortical dynamics , 2005, Philosophical Transactions of the Royal Society B: Biological Sciences.

[4]  R. Malach,et al.  Object-related activity revealed by functional magnetic resonance imaging in human occipital cortex. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[5]  R. Shapley,et al.  Information Tuning of Populations of Neurons in Primary Visual Cortex , 2004, The Journal of Neuroscience.

[6]  Anthony J. Movshon,et al.  Optimal representation of sensory information by neural populations , 2006, Nature Neuroscience.

[7]  J. Gallant,et al.  Identifying natural images from human brain activity , 2008, Nature.

[8]  Edward F. Ester,et al.  PSYCHOLOGICAL SCIENCE Research Article Stimulus-Specific Delay Activity in Human Primary Visual Cortex , 2022 .

[9]  Adrian T. Lee,et al.  fMRI of human visual cortex , 1994, Nature.

[10]  D. Regan,et al.  Nonlinearity in human visual responses to two-dimensional patterns, and a limitation of fourier methods , 1987, Vision Research.

[11]  David D. Cox,et al.  Functional magnetic resonance imaging (fMRI) “brain reading”: detecting and classifying distributed patterns of fMRI activity in human visual cortex , 2003, NeuroImage.

[12]  F. Tong,et al.  Decoding reveals the contents of visual working memory in early visual areas , 2009, Nature.

[13]  A. Dale,et al.  The Retinotopy of Visual Spatial Attention , 1998, Neuron.

[14]  J W Belliveau,et al.  Borders of multiple visual areas in humans revealed by functional magnetic resonance imaging. , 1995, Science.

[15]  R. Desimone,et al.  Selective attention gates visual processing in the extrastriate cortex. , 1985, Science.

[16]  Justin L. Gardner,et al.  Modulation of Visual Responses by Gaze Direction in Human Visual Cortex , 2013, The Journal of Neuroscience.

[17]  B. Wandell,et al.  Visual Field Maps in Human Cortex , 2007, Neuron.

[18]  D. Butts,et al.  Tuning Curves, Neuronal Variability, and Sensory Coding , 2006, PLoS biology.

[19]  Tolga Çukur,et al.  Functional Subdomains within Human FFA , 2013, The Journal of Neuroscience.

[20]  P. Schiller,et al.  Quantitative studies of single-cell properties in monkey striate cortex. II. Orientation specificity and ocular dominance. , 1976, Journal of neurophysiology.

[21]  Brian A. Wandell,et al.  Population receptive field estimates in human visual cortex , 2008, NeuroImage.

[22]  Scott D. Brown,et al.  The Optimality of Sensory Processing during the Speed–Accuracy Tradeoff , 2012, The Journal of Neuroscience.

[23]  D. Kleinfeld,et al.  Stimulus-Induced Changes in Blood Flow and 2-Deoxyglucose Uptake Dissociate in Ipsilateral Somatosensory Cortex , 2008, The Journal of Neuroscience.

[24]  K O Johnson,et al.  Sensory discrimination: decision process. , 1980, Journal of neurophysiology.

[25]  N. Kanwisher,et al.  The Fusiform Face Area: A Module in Human Extrastriate Cortex Specialized for Face Perception , 1997, The Journal of Neuroscience.

[26]  D. Heeger,et al.  Decoding and Reconstructing Color from Responses in Human Visual Cortex , 2009, The Journal of Neuroscience.

[27]  B. Wandell,et al.  Visual field maps, population receptive field sizes, and visual field coverage in the human MT+ complex. , 2009, Journal of neurophysiology.

[28]  R. Desimone,et al.  Neural mechanisms of spatial selective attention in areas V1, V2, and V4 of macaque visual cortex. , 1997, Journal of neurophysiology.

[29]  Nikolaus Kriegeskorte,et al.  Pattern-information analysis: From stimulus decoding to computational-model testing , 2011, NeuroImage.

[30]  Edward Awh,et al.  Attending Multiple Items Decreases the Selectivity of Population Responses in Human Primary Visual Cortex , 2013, The Journal of Neuroscience.

[31]  R. Desimone,et al.  Stimulus-selective properties of inferior temporal neurons in the macaque , 1984, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[32]  N. Kanwisher Functional specificity in the human brain: A window into the functional architecture of the mind , 2010, Proceedings of the National Academy of Sciences.

[33]  D. Regan Human brain electrophysiology: Evoked potentials and evoked magnetic fields in science and medicine , 1989 .

[34]  Miranda Scolari,et al.  Estimating the influence of attention on population codes in human visual cortex using voxel-based tuning functions , 2009, NeuroImage.

[35]  John H. R. Maunsell,et al.  Attentional modulation of visual motion processing in cortical areas MT and MST , 1996, Nature.

[36]  F. Tong,et al.  Decoding Seen and Attended Motion Directions from Activity in the Human Visual Cortex , 2006, Current Biology.

[37]  Edward Awh,et al.  A Neural Measure of Precision in Visual Working Memory , 2013, Journal of Cognitive Neuroscience.

[38]  Sean M. Polyn,et al.  Beyond mind-reading: multi-voxel pattern analysis of fMRI data , 2006, Trends in Cognitive Sciences.

[39]  B. P. Klein,et al.  Topographic Representation of Numerosity in the Human Parietal Cortex , 2013, Science.

[40]  Elaine J. Anderson,et al.  Perceptual load affects spatial tuning of neuronal populations in human early visual cortex , 2014, Current Biology.

[41]  Nancy Kanwisher,et al.  A cortical representation of the local visual environment , 1998, Nature.

[42]  R. Desimone,et al.  Attention Increases Sensitivity of V4 Neurons , 2000, Neuron.

[43]  H. Barlow,et al.  Single Units and Sensation: A Neuron Doctrine for Perceptual Psychology? , 1972, Perception.

[44]  L. Itti,et al.  Search Goal Tunes Visual Features Optimally , 2007, Neuron.

[45]  Mark D'Esposito,et al.  Attention Selectively Modifies the Representation of Individual Faces in the Human Brain , 2013, The Journal of Neuroscience.

[46]  G. Barnes,et al.  Identifying spatially overlapping local cortical networks with MEG , 2009, Human brain mapping.

[47]  Alexander G. Huth,et al.  Attention During Natural Vision Warps Semantic Representation Across the Human Brain , 2013, Nature Neuroscience.

[48]  S. Dumoulin,et al.  Modeling center-surround configurations in population receptive fields using fMRI. , 2012, Journal of vision.

[49]  Stephen LaConte,et al.  Decoding fMRI brain states in real-time , 2011, NeuroImage.

[50]  P. Schiller,et al.  Quantitative studies of single-cell properties in monkey striate cortex. I. Spatiotemporal organization of receptive fields. , 1976, Journal of neurophysiology.

[51]  R. Zemel,et al.  Inference and computation with population codes. , 2003, Annual review of neuroscience.

[52]  Yevgeniy B. Sirotin,et al.  Anticipatory haemodynamic signals in sensory cortex not predicted by local neuronal activity. , 2009, Nature.

[53]  Yevgeniy B. Sirotin,et al.  The neuroimaging signal is a linear sum of neurally distinct stimulus- and task-related components , 2012, Nature Neuroscience.

[54]  John T. Serences,et al.  Computational advances towards linking BOLD and behavior , 2012, Neuropsychologia.

[55]  D. Hubel,et al.  Receptive fields of single neurones in the cat's striate cortex , 1959, The Journal of physiology.

[56]  Scott D. Brown,et al.  The simplest complete model of choice response time: Linear ballistic accumulation , 2008, Cognitive Psychology.

[57]  D. Heeger,et al.  Categorical Clustering of the Neural Representation of Color , 2013, The Journal of Neuroscience.

[58]  John T. Serences,et al.  Attention modulates spatial priority maps in the human occipital, parietal and frontal cortices , 2013, Nature Neuroscience.

[59]  F. D. de Lange,et al.  Prior Expectations Bias Sensory Representations in Visual Cortex , 2013, The Journal of Neuroscience.

[60]  J. Serences,et al.  Optimal Deployment of Attentional Gain during Fine Discriminations , 2012, The Journal of Neuroscience.

[61]  John-Dylan Haynes,et al.  Decoding the Contents of Visual Short-Term Memory from Human Visual and Parietal Cortex , 2012, The Journal of Neuroscience.

[62]  J. Serences,et al.  Near-Real-Time Feature-Selective Modulations in Human Cortex , 2013, Current Biology.

[63]  Adam C. Riggall,et al.  Distributed Patterns of Activity in Sensory Cortex Reflect the Precision of Multiple Items Maintained in Visual Short-Term Memory , 2013, The Journal of Neuroscience.

[64]  D. Regan,et al.  Postadaptation orientation discrimination. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[65]  J. Gallant,et al.  Complete functional characterization of sensory neurons by system identification. , 2006, Annual review of neuroscience.

[66]  Eero P. Simoncelli,et al.  Metamers of the ventral stream , 2011, Nature Neuroscience.

[67]  P. Schiller,et al.  Quantitative studies of single-cell properties in monkey striate cortex. III. Spatial frequency. , 1976, Journal of neurophysiology.

[68]  S. Kastner,et al.  Topographic maps in human frontal and parietal cortex , 2009, Trends in Cognitive Sciences.

[69]  R. Savoy Functional Magnetic Resonance Imaging (fMRI) , 2002 .

[70]  Jack L. Gallant,et al.  A Continuous Semantic Space Describes the Representation of Thousands of Object and Action Categories across the Human Brain , 2012, Neuron.

[71]  J. Haynes Brain Reading: Decoding Mental States From Brain Activity In Humans , 2011 .

[72]  D. G. Albrecht,et al.  Spikes versus BOLD: what does neuroimaging tell us about neuronal activity? , 2000, Nature Neuroscience.

[73]  S. Dehaene,et al.  Representation of number in the brain. , 2009, Annual review of neuroscience.

[74]  G. Boynton,et al.  Feature-Based Attentional Modulations in the Absence of Direct Visual Stimulation , 2007, Neuron.

[75]  G. Rees,et al.  Predicting the orientation of invisible stimuli from activity in human primary visual cortex , 2005, Nature Neuroscience.

[76]  Gabriel Kreiman,et al.  Tutorial on Pattern Classification in Cell Recording , 2011 .

[77]  J. R. Hughes,et al.  Human brain electrophysiology. Evoked potentials and evoked magnetic fields in science and medicine , 1989 .

[78]  Nikos K. Logothetis,et al.  A new method for estimating population receptive field topography in visual cortex , 2013, NeuroImage.

[79]  Michael S. Pratte,et al.  Decoding patterns of human brain activity. , 2012, Annual review of psychology.

[80]  H. Rodman,et al.  Coding of visual stimulus velocity in area MT of the macaque , 1987, Vision Research.

[81]  Ryan J. Prenger,et al.  Bayesian Reconstruction of Natural Images from Human Brain Activity , 2009, Neuron.

[82]  Doris Y. Tsao,et al.  A face feature space in the macaque temporal lobe , 2009, Nature Neuroscience.

[83]  J. Serences,et al.  Spatial attention improves the quality of population codes in human visual cortex. , 2010, Journal of neurophysiology.

[84]  Jack L. Gallant,et al.  Encoding and decoding in fMRI , 2011, NeuroImage.

[85]  Marisa Carrasco,et al.  Attentional enhancement of spatial resolution: linking behavioural and neurophysiological evidence , 2013, Nature Reviews Neuroscience.

[86]  D. Heeger,et al.  Cross-orientation suppression in human visual cortex. , 2011, Journal of neurophysiology.

[87]  B. Biswal,et al.  High‐resolution fMRI using multislice partial k‐space GR‐EPI with cubic voxels , 2001, Magnetic resonance in medicine.

[88]  S. Treue,et al.  Feature-Based Attention Increases the Selectivity of Population Responses in Primate Visual Cortex , 2004, Current Biology.

[89]  Nikos K Logothetis,et al.  Interpreting the BOLD signal. , 2004, Annual review of physiology.

[90]  Doris Y. Tsao,et al.  Mechanisms of face perception. , 2008, Annual review of neuroscience.

[91]  F. Tong,et al.  Decoding the visual and subjective contents of the human brain , 2005, Nature Neuroscience.

[92]  Leslie G. Ungerleider,et al.  Increased Activity in Human Visual Cortex during Directed Attention in the Absence of Visual Stimulation , 1999, Neuron.

[93]  J. Gallant,et al.  Reconstructing Visual Experiences from Brain Activity Evoked by Natural Movies , 2011, Current Biology.

[94]  Edward F. Ester,et al.  Spatially Global Representations in Human Primary Visual Cortex during Working Memory Maintenance , 2009, The Journal of Neuroscience.

[95]  Klaus Oberauer,et al.  Decoding Attended Information in Short-term Memory: An EEG Study , 2013, Journal of Cognitive Neuroscience.

[96]  H Sompolinsky,et al.  Simple models for reading neuronal population codes. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[97]  Peter Lennie,et al.  Coding of color and form in the geniculostriate visual pathway (invited review). , 2005, Journal of the Optical Society of America. A, Optics, image science, and vision.