Making AUVs Truly Autonomous

Autonomous underwater vehicles are gaining acceptance in a number of applications and countries, as a safe, cost-effective and reliable alternative to manned or remotely controlled systems. However, the actual autonomy of these vehicles is limited in many ways, restricting their potential uses. Further advances in AUV autonomy will enable new operations, such as very long endurance missions (weeks), and operations in unknown areas. While some experimentation is already taking place with e.g. under ice operations, the chance of failure is unacceptably high for many potential users. De-risking of long- endurance autonomous operations in unknown areas is thus an important goal for the AUV community. This paper gives an overview of the AUV research being carried out towards this end at the Norwegian Defence Research Establishment.

[1]  Howie Choset,et al.  Coverage for robotics – A survey of recent results , 2001, Annals of Mathematics and Artificial Intelligence.

[2]  Rodney A. Brooks,et al.  A Robust Layered Control Syste For A Mobile Robot , 2022 .

[3]  Wesley H. Huang Optimal line-sweep-based decompositions for coverage algorithms , 2001, Proceedings 2001 ICRA. IEEE International Conference on Robotics and Automation (Cat. No.01CH37164).

[4]  A. Bellettini,et al.  Theoretical accuracy of synthetic aperture sonar micronavigation using a displaced phase-center antenna , 2002 .

[5]  J. Watt Collision Avoidance Systems , 1973 .

[6]  Roy Edgar Hansen,et al.  Interferometric Synthetic Aperture Sonar for AUV Based Mine Hunting: The SENSOTEK project , 2001 .

[7]  L. Hostetler,et al.  Optimal terrain-aided navigation systems , 1978 .

[8]  Vladimir J. Lumelsky,et al.  A terrain-covering algorithm for an AUV , 1996, Auton. Robots.

[9]  Brian S. Bourgeois,et al.  Autonomous bathymetry survey system , 1999 .

[10]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[11]  Bjørn Jalving,et al.  Program Philosophy and Software Architecture for the HUGIN Seabed Surveying UUV , 1998 .

[12]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[13]  O. Hallingstad,et al.  Terrain Aided Underwater Navigation Using Point Mass and Particle Filters , 2006, 2006 IEEE/ION Position, Location, And Navigation Symposium.

[14]  G. Zorpette Autopilots of the deep , 1994, IEEE Spectrum.

[15]  Einar Berglund,et al.  Model-aided inertial navigation for underwater vehicles , 2008, 2008 IEEE International Conference on Robotics and Automation.

[16]  Ronald C. Arkin,et al.  An Behavior-based Robotics , 1998 .

[17]  Junku Yuh,et al.  On AUV control architecture , 2000, Proceedings. 2000 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS 2000) (Cat. No.00CH37113).

[18]  K. Vestgard,et al.  Payload sensors, navigation and risk reduction for AUV under ice surveys , 2008, OCEANS 2008.

[19]  Fredrik Gustafsson,et al.  Terrain navigation using Bayesian statistics , 1999 .

[20]  Marco Dorigo,et al.  Swarm intelligence: from natural to artificial systems , 1999 .

[21]  B. Jalving,et al.  Integrating DGPS-USBL position measurements with inertial navigation in the HUGIN 3000 AUV , 2002 .

[22]  B. Jalving,et al.  A toolbox of aiding techniques for the HUGIN AUV integrated Inertial Navigation system , 2004 .

[23]  Maja Matijasevic,et al.  Control architectures for autonomous underwater vehicles , 1997 .

[24]  Oddvar Hallingstad,et al.  Towards Model-Aided Navigation of Underwater Vehicles , 2007 .

[25]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[26]  Joe P. Golden,et al.  Terrain Contour Matching (TERCOM): A Cruise Missile Guidance Aid , 1980, Optics & Photonics.

[27]  Steven M. LaValle,et al.  Planning algorithms , 2006 .

[28]  Marc Carreras,et al.  An Overview on Behaviour-Based Methods for AUV Control , 2000 .

[29]  Nils Størkersen,et al.  CLIPPER: a long-range, autonomous underwater vehicle using magnesium fuel and oxygen from the sea , 2004 .

[30]  Nils Størkersen,et al.  Power sources for autonomous underwater vehicles , 2006 .

[31]  Kenneth Gade,et al.  NavLab, a Generic Simulation and Post-processing Tool for Navigation , 2005 .

[32]  O.K. Hagen TerrLab - a generic simulation and post-processing tool for terrain referenced navigation , 2006, OCEANS 2006.

[33]  R.E. Hansen,et al.  Signal processing for AUV based interferometric synthetic aperture sonar , 2003, Oceans 2003. Celebrating the Past ... Teaming Toward the Future (IEEE Cat. No.03CH37492).