Evolutionary multi-objective optimization for mesh simplification of 3D open models

Polygonal surface models are typically used in three dimensional 3D visualizations and simulations. They are obtained by laser scanners, computer vision systems or medical imaging devices to model highly detailed object surfaces. Surface mesh simplification aims to reduce the number of faces used in a 3D model while keeping the overall shape, boundaries and volume. In this work, we propose to deal with the 3D open model mesh simplification problem from an evolutionary multi-objective viewpoint. The quality of a solution is defined by two conflicting objectives: the accuracy and the simplicity of the model. We adapted the Non-Dominated Sorting Genetic Algorithm II NSGA-II and the Multi-Objective Evolutionary Algorithm Based on Decomposition MOEA/D to tackle the problem. We compare their performance with two classic approaches and two single-objective implementations. The comparison has been carried out using six different datasets from six corresponding real-world objects. Experimental results have demonstrated that NSGA-II and MOEA/D performs similarly and obtain the best solutions for the studied problem.

[1]  Mengjie Zhang,et al.  Improving Object Detection Performance with Genetic Programming , 2007, Int. J. Artif. Intell. Tools.

[2]  Hidefumi Sawai,et al.  Evolutionary computation applied to mesh optimization of a 3-D facial image , 1999, IEEE Trans. Evol. Comput..

[3]  Tatsuya Akutsu,et al.  A Quadsection Algorithm for Grammar-Based Image Compression , 2010, FGIT.

[4]  Sancho Salcedo-Sanz,et al.  An incremental-encoding evolutionary algorithm for color reduction in images , 2010, Integr. Comput. Aided Eng..

[5]  Kenneth Alan De Jong,et al.  An analysis of the behavior of a class of genetic adaptive systems. , 1975 .

[6]  Yacov Y. Haimes,et al.  Multiobjective Decision Making: Theory and Methodology , 1983 .

[7]  Jing Wang,et al.  A wavelet-based particle swarm optimization algorithm for digital image watermarking , 2012, Integr. Comput. Aided Eng..

[8]  Paul S. Heckbert,et al.  Survey of Polygonal Surface Simplification Algorithms , 1997 .

[9]  Katsushi Ikeuchi,et al.  Modelling from reality , 2001 .

[10]  Kalyanmoy Deb,et al.  A fast and elitist multiobjective genetic algorithm: NSGA-II , 2002, IEEE Trans. Evol. Comput..

[11]  Zbigniew Michalewicz,et al.  Handbook of Evolutionary Computation , 1997 .

[12]  Jintao Wang,et al.  Adaptive Mesh Simplification Using Vertex Clustering with Topology Preserving , 2008, 2008 International Conference on Computer Science and Software Engineering.

[13]  José Ranilla,et al.  A low-cost 3D human interface device using GPU-based optical flow algorithms , 2011, Integr. Comput. Aided Eng..

[14]  Joshua D. Knowles,et al.  On metrics for comparing nondominated sets , 2002, Proceedings of the 2002 Congress on Evolutionary Computation. CEC'02 (Cat. No.02TH8600).

[15]  Chang-Hun Kim,et al.  Extracting feature lines from unstructured meshes using a model feature map , 2006, Integr. Comput. Aided Eng..

[16]  T. Xiaodong,et al.  Mesh Simplification Based on Super-Face and Genetic Algorithm in Reverse Engineering , 2002 .

[17]  Genki Yagawa,et al.  Automatic mesh generation of complex geometries based on fuzzy knowledge processing and computational geometry , 1995 .

[18]  Gary W. Meyer,et al.  Perceptually Guided Polygon Reduction , 2008, IEEE Transactions on Visualization and Computer Graphics.

[19]  Hugues Hoppe,et al.  Progressive meshes , 1996, SIGGRAPH.

[20]  Oscar Cordón,et al.  Performance evaluation of memetic approaches in 3D reconstruction of forensic objects , 2008, Soft Comput..

[21]  Franz Aurenhammer,et al.  Voronoi Diagrams , 2000, Handbook of Computational Geometry.

[22]  Lothar Thiele,et al.  Comparison of Multiobjective Evolutionary Algorithms: Empirical Results , 2000, Evolutionary Computation.

[23]  William E. Lorensen,et al.  Decimation of triangle meshes , 1992, SIGGRAPH.

[24]  Dimitri Plemenos,et al.  Intelligent Computer Graphics 2011 , 2012, Studies in Computational Intelligence.

[25]  Yuping Wang,et al.  An orthogonal genetic algorithm with quantization for global numerical optimization , 2001, IEEE Trans. Evol. Comput..

[26]  Dinesh Manocha,et al.  Simplification envelopes , 1996, SIGGRAPH.

[27]  Michael Garland,et al.  Simplifying surfaces with color and texture using quadric error metrics , 1998, IEEE Visualization.

[28]  David Luebke,et al.  A Survey of Polygonal Simplification Algorithms , 1997 .

[29]  K. Dejong,et al.  An analysis of the behavior of a class of genetic adaptive systems , 1975 .

[30]  Enrico Zio,et al.  Genetic algorithm-based wrapper approach for grouping condition monitoring signals of nuclear power plant components , 2011, Integr. Comput. Aided Eng..

[31]  Greg Turk,et al.  Re-tiling polygonal surfaces , 1992, SIGGRAPH.

[32]  Hojjat Adeli,et al.  Distributed Computer-Aided Engineering: For Analysis, Design, and Visualization , 1998 .

[33]  Luca Quadrifoglio,et al.  Comparing Ant Colony Optimization and Genetic Algorithm Approaches for Solving Traffic Signal Coordination under Oversaturation Conditions , 2012, Comput. Aided Civ. Infrastructure Eng..

[34]  Teruo Mori Taguchi techniques for image and pattern developing technology , 1995 .

[35]  Joonki Paik,et al.  Surface modeling using multi-view range and color images , 2003, Integr. Comput. Aided Eng..

[36]  Charles D. Hansen,et al.  Geometric optimization , 1993, Proceedings Visualization '93.

[37]  Luciano Sánchez,et al.  Obtaining transparent models of chaotic systems with multi-objective simulated annealing algorithms , 2008, Inf. Sci..

[38]  R. Ho Algebraic Topology , 2022 .

[39]  Franco Bontempi,et al.  Genetic Algorithms for the Dependability Assurance in the Design of a Long‐Span Suspension Bridge , 2012, Comput. Aided Civ. Infrastructure Eng..

[40]  Li Junl,et al.  Centroid particle swarm optimization algorithm , 2011 .

[41]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems (Genetic and Evolutionary Computation) , 2006 .

[42]  Tong Heng Lee,et al.  Multiobjective Evolutionary Algorithms and Applications , 2005, Advanced Information and Knowledge Processing.

[43]  Bernd Hamann,et al.  A data reduction scheme for triangulated surfaces , 1994, Comput. Aided Geom. Des..

[44]  F. Wilcoxon Individual Comparisons by Ranking Methods , 1945 .

[45]  M. Victoria Luzón,et al.  Modeling the Performance of Evolutionary Algorithms on the Root Identification Problem: A Case Study with PBIL and CHC Algorithms , 2011, Evolutionary Computation.

[46]  Stefano Cagnoni,et al.  Editorial Introduction to the Special Issue on Evolutionary Computer Vision , 2008, Evolutionary Computation.

[47]  Francisco Herrera,et al.  A study on the use of non-parametric tests for analyzing the evolutionary algorithms’ behaviour: a case study on the CEC’2005 Special Session on Real Parameter Optimization , 2009, J. Heuristics.

[48]  Dimitri Plemenos,et al.  Intelligent Techniques for Computer Graphics , .

[49]  James A. Reggia,et al.  Causally-guided evolutionary optimization and its application to antenna array design , 2012, Integr. Comput. Aided Eng..

[50]  Hong Zhou,et al.  Accurate integration of multi-view range images using k-means clustering , 2008, Pattern Recognit..

[51]  Lothar Thiele,et al.  Multiobjective evolutionary algorithms: a comparative case study and the strength Pareto approach , 1999, IEEE Trans. Evol. Comput..

[52]  Hojjat Adeli,et al.  Machine Learning: Neural Networks , 1994 .

[53]  Hojjat Adeli,et al.  Machine Learning: Neural Networks, Genetic Algorithms, and Fuzzy Systems , 1994 .

[54]  Gary B. Lamont,et al.  Evolutionary Algorithms for Solving Multi-Objective Problems , 2002, Genetic Algorithms and Evolutionary Computation.

[55]  Franz Aurenhammer,et al.  Voronoi diagrams—a survey of a fundamental geometric data structure , 1991, CSUR.

[56]  Aimin Zhou,et al.  A Multiobjective Evolutionary Algorithm Based on Decomposition and Preselection , 2015, BIC-TA.

[57]  Sami F. Masri,et al.  Finite Element Model Updating Using Evolutionary Strategy for Damage Detection , 2011, Comput. Aided Civ. Infrastructure Eng..

[58]  Markus H. Gross,et al.  Efficient Triangular Surface Approximations Using Wavelets and Quadtree Data Structures , 1996, IEEE Trans. Vis. Comput. Graph..

[59]  Emilio Corchado,et al.  Optimising operational costs using Soft Computing techniques , 2011, Integr. Comput. Aided Eng..

[60]  Kalyanmoy Deb,et al.  MULTI-OBJECTIVE FUNCTION OPTIMIZATION USING NON-DOMINATED SORTING GENETIC ALGORITHMS , 1994 .

[61]  Marco Laumanns,et al.  Performance assessment of multiobjective optimizers: an analysis and review , 2003, IEEE Trans. Evol. Comput..

[62]  Kalyanmoy Deb,et al.  Muiltiobjective Optimization Using Nondominated Sorting in Genetic Algorithms , 1994, Evolutionary Computation.

[63]  Giuseppe Quaranta,et al.  Modified Genetic Algorithm for the Dynamic Identification of Structural Systems Using Incomplete Measurements , 2011, Comput. Aided Civ. Infrastructure Eng..

[64]  Michael Zyda,et al.  Simplification of objects rendered by polygonal approximations , 1991, Comput. Graph..

[65]  Kim L. Boyer,et al.  Precision range image registration using a robust surface interpenetration measure and enhanced genetic algorithms , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[66]  Tony DeRose,et al.  Mesh optimization , 1993, SIGGRAPH.

[67]  Zeng Chen,et al.  Automatic image search based on improved feature descriptors and decision tree , 2011, Integr. Comput. Aided Eng..

[68]  Paolo Cignoni,et al.  A comparison of mesh simplification algorithms , 1998, Comput. Graph..

[69]  Holly E. Rushmeier,et al.  The 3D Model Acquisition Pipeline , 2002, Comput. Graph. Forum.

[70]  A. E. Eiben,et al.  Introduction to Evolutionary Computing , 2003, Natural Computing Series.

[71]  Shinn-Ying Ho,et al.  Mesh optimization for surface approximation using an efficient coarse-to-fine evolutionary algorithm , 2003, Pattern Recognit..

[72]  Michael Garland,et al.  Surface simplification using quadric error metrics , 1997, SIGGRAPH.

[73]  Gilbert Syswerda,et al.  Uniform Crossover in Genetic Algorithms , 1989, ICGA.

[74]  Oscar Cordón,et al.  Mesh simplification for 3D modeling using evolutionary multi-objective optimization , 2012, 2012 IEEE Congress on Evolutionary Computation.

[75]  Lothar Thiele,et al.  A Tutorial on the Performance Assessment of Stochastic Multiobjective Optimizers , 2006 .

[76]  Tong Heng Lee,et al.  Multiobjective Evolutionary Algorithms and Applications (Advanced Information and Knowledge Processing) , 2005 .

[77]  Oscar Cordón,et al.  An experimental study on the applicability of evolutionary algorithms to craniofacial superimposition in forensic identification , 2009, Inf. Sci..

[78]  D. M. Thomas,et al.  Mesh Simplification Based on Edge Collapsing Could Improve Computational Efficiency in Near Infrared Optical Tomographic Imaging , 2012, IEEE Journal of Selected Topics in Quantum Electronics.

[79]  Michael Yu Wang,et al.  Engineered Model Simplification for Simulation Based Structural Design , 2012 .

[80]  D. J. Hebert,et al.  Image encoding with triangulation wavelets , 1995, Optics + Photonics.

[81]  Christopher Pincock,et al.  Modeling reality , 2009, Synthese.