From receptive profiles to a metric model of V1

In this work we show how to construct connectivity kernels induced by the receptive profiles of simple cells of the primary visual cortex (V1). These kernels are directly defined by the shape of such profiles: this provides a metric model for the functional architecture of V1, whose global geometry is determined by the reciprocal interactions between local elements. Our construction adapts to any bank of filters chosen to represent a set of receptive profiles, since it does not require any structure on the parameterization of the family. The connectivity kernel that we define carries a geometrical structure consistent with the well-known properties of long-range horizontal connections in V1, and it is compatible with the perceptual rules synthesized by the concept of association field. These characteristics are still present when the kernel is constructed from a bank of filters arising from an unsupervised learning algorithm.

[1]  Stéphane Lafon,et al.  Diffusion maps , 2006 .

[2]  Karl-Theodor Sturm,et al.  Diffusion processes and heat kernels on metric spaces , 1998 .

[3]  A. Sarti,et al.  Spatiotemporal receptive fields of cells in V1 are optimally shaped for stimulus velocity estimation. , 2012, Journal of the Optical Society of America. A, Optics, image science, and vision.

[4]  J. Daugman Uncertainty relation for resolution in space, spatial frequency, and orientation optimized by two-dimensional visual cortical filters. , 1985, Journal of the Optical Society of America. A, Optics and image science.

[5]  G. Mitchison,et al.  Long axons within the striate cortex: their distribution, orientation, and patterns of connection. , 1982, Proceedings of the National Academy of Sciences of the United States of America.

[6]  Michael Felsberg,et al.  Image Analysis and Reconstruction using a Wavelet Transform Constructed from a Reducible Representation of the Euclidean Motion Group , 2007, International Journal of Computer Vision.

[7]  R. Montgomery A Tour of Subriemannian Geometries, Their Geodesics and Applications , 2006 .

[8]  R. Duits,et al.  Left-invariant parabolic evolutions on SE(2) and contour enhancement via invertible orientation scores. Part I: Linear left-invariant diffusion equations on SE(2) , 2010 .

[9]  H. Neumann,et al.  A recurrent model of contour integration in primary visual cortex. , 2008, Journal of vision.

[10]  Rajat Raina,et al.  Efficient sparse coding algorithms , 2006, NIPS.

[11]  Andrea Vedaldi,et al.  MatConvNet: Convolutional Neural Networks for MATLAB , 2014, ACM Multimedia.

[12]  David J. Field,et al.  Emergence of simple-cell receptive field properties by learning a sparse code for natural images , 1996, Nature.

[13]  Luca Antiga,et al.  Automatic differentiation in PyTorch , 2017 .

[14]  Francesco Uguzzoni,et al.  Stratified Lie groups and potential theory for their sub-Laplacians , 2007 .

[15]  J. Cowan,et al.  The functional geometry of local and horizontal connections in a model of V1 , 2003, Journal of Physiology-Paris.

[16]  S. Zucker,et al.  Endstopped neurons in the visual cortex as a substrate for calculating curvature , 1987, Nature.

[17]  Ennio Mingolla,et al.  Neural dynamics of perceptual grouping: Textures, boundaries, and emergent segmentations , 1985 .

[18]  G Westheimer,et al.  Dynamics of spatial summation in primary visual cortex of alert monkeys. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[19]  J. B. Levitt,et al.  Circuits for Local and Global Signal Integration in Primary Visual Cortex , 2002, The Journal of Neuroscience.

[20]  Ohad Ben-Shahar,et al.  Cortical connections and early visual function: intra- and inter-columnar processing , 2003, Journal of Physiology-Paris.

[21]  Giovanna Citti,et al.  A Cortical-Inspired Geometry for Contour Perception and Motion Integration , 2013, Journal of Mathematical Imaging and Vision.

[22]  Karl-Theodor Sturm,et al.  ON THE GEOMETRY DEFINED BY DIRICHLET FORMS , 1995 .

[23]  Jean-Pierre Antoine,et al.  Two-dimensional directional wavelets and the scale-angle representation , 1996, Signal Process..

[24]  F. Hausdorff Dimension und äußeres Maß , 1918 .

[25]  Samaneh Abbasi-Sureshjani,et al.  Curvature Integration in a 5D Kernel for Extracting Vessel Connections in Retinal Images , 2016, IEEE Transactions on Image Processing.

[26]  Giovanna Citti,et al.  The constitution of visual perceptual units in the functional architecture of V1 , 2014, Journal of Computational Neuroscience.

[27]  Heiko Neumann,et al.  Computational Neural Models of Spatial Integration in Perceptual Grouping , 2001 .

[28]  J. P. Jones,et al.  An evaluation of the two-dimensional Gabor filter model of simple receptive fields in cat striate cortex. , 1987, Journal of neurophysiology.

[29]  J. Alonso,et al.  Complex Receptive Fields in Primary Visual Cortex , 2003, The Neuroscientist : a review journal bringing neurobiology, neurology and psychiatry.

[30]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[31]  J. Bullier,et al.  Reaching beyond the classical receptive field of V1 neurons: horizontal or feedback axons? , 2003, Journal of Physiology-Paris.

[32]  D. Fitzpatrick,et al.  Orientation Selectivity and the Arrangement of Horizontal Connections in Tree Shrew Striate Cortex , 1997, The Journal of Neuroscience.

[33]  Martin Golubitsky,et al.  What Geometric Visual Hallucinations Tell Us about the Visual Cortex , 2002, Neural Computation.

[34]  Stephan J. Garbin,et al.  Harmonic Networks: Deep Translation and Rotation Equivariance , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[35]  N. Aronszajn Theory of Reproducing Kernels. , 1950 .

[36]  C. Gilbert,et al.  Top-down influences on visual processing , 2013, Nature Reviews Neuroscience.

[37]  C. Gilbert,et al.  On a common circle: natural scenes and Gestalt rules. , 2001, Proceedings of the National Academy of Sciences of the United States of America.

[38]  P. Lennie Receptive fields , 2003, Current Biology.

[39]  Iain D Gilchrist,et al.  Oculomotor capture by transient events: a comparison of abrupt onsets, offsets, motion, and flicker. , 2008, Journal of vision.

[40]  Max Welling,et al.  Group Equivariant Convolutional Networks , 2016, ICML.

[41]  Jean-Paul Gauthier,et al.  Hypoelliptic Diffusion and Human Vision: A Semidiscrete New Twist , 2014, SIAM J. Imaging Sci..

[42]  A. Sarti,et al.  A model of natural image edge co-occurrence in the rototranslation group. , 2010, Journal of vision.

[43]  Ohad Ben-Shahar,et al.  Geometrical Computations Explain Projection Patterns of Long-Range Horizontal Connections in Visual Cortex , 2004, Neural Computation.

[44]  Marta Favali,et al.  Local and Global Gestalt Laws: A Neurally Based Spectral Approach , 2015, Neural Computation.

[45]  H. Fédérer Geometric Measure Theory , 1969 .

[46]  C. Gilbert,et al.  Spatial integration and cortical dynamics. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[47]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[48]  Giovanna Citti,et al.  The symplectic structure of the primary visual cortex , 2008, Biological Cybernetics.

[49]  Remco Duits,et al.  Association Fields via Cuspless Sub-Riemannian Geodesics in SE(2) , 2013, Journal of Mathematical Imaging and Vision.

[50]  D. Mumford Elastica and Computer Vision , 1994 .

[51]  Jeffrey S. Perry,et al.  Edge co-occurrence in natural images predicts contour grouping performance , 2001, Vision Research.

[52]  Giovanna Citti,et al.  A Cortical Based Model of Perceptual Completion in the Roto-Translation Space , 2006, Journal of Mathematical Imaging and Vision.

[53]  L. Finkel,et al.  Extraction of perceptually salient contours by striate cortical networks , 1998, Vision Research.

[54]  D. Hubel,et al.  Receptive fields, binocular interaction and functional architecture in the cat's visual cortex , 1962, The Journal of physiology.

[55]  Xiaolin Hu,et al.  Recurrent convolutional neural network for object recognition , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[56]  S Grossberg,et al.  Neural dynamics of perceptual grouping: Textures, boundaries, and emergent segmentations , 1985, Perception & psychophysics.

[57]  Tsuyoshi Murata,et al.  {m , 1934, ACML.

[58]  Mitko Veta,et al.  Roto-Translation Covariant Convolutional Networks for Medical Image Analysis , 2018, MICCAI.

[59]  J. Petitot,et al.  Vers une neurogéométrie. Fibrations corticales, structures de contact et contours subjectifs modaux , 1999 .

[60]  Stéphane Mallat,et al.  Rotation, Scaling and Deformation Invariant Scattering for Texture Discrimination , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[61]  A. Sarti,et al.  An uncertainty principle underlying the functional architecture of V1 , 2012, Journal of Physiology-Paris.

[62]  Remco Duits Perceptual organization in image analysis : a mathematical approach based on scale, orientation and curvature , 2005 .

[63]  B. Nadler,et al.  Diffusion maps, spectral clustering and reaction coordinates of dynamical systems , 2005, math/0503445.

[64]  David Svoboda,et al.  Algorithms for Efficient Computation of Convolution , 2013 .

[65]  Tomaso Poggio,et al.  Representation Learning in Sensory Cortex: A Theory , 2014, IEEE Access.

[67]  David J. Field,et al.  Contour integration by the human visual system: Evidence for a local “association field” , 1993, Vision Research.

[68]  Caixia Deng,et al.  The reproducing kernel Hilbert space based on wavelet transform , 2010, 2010 International Conference on Wavelet Analysis and Pattern Recognition.

[69]  Danna Zhou,et al.  d. , 1934, Microbial pathogenesis.

[70]  Nikolaus Kriegeskorte,et al.  Recurrent Convolutional Neural Networks: A Better Model of Biological Object Recognition , 2017, bioRxiv.

[71]  L. Florack,et al.  Evolution equations on Gabor transforms and their applications , 2011, 1110.6087.

[72]  Giovanna Citti,et al.  A Metric Model for the Functional Architecture of the Visual Cortex , 2018, SIAM J. Appl. Math..

[73]  J. Elder,et al.  Ecological statistics of Gestalt laws for the perceptual organization of contours. , 2002, Journal of vision.

[74]  Tai Sing Lee,et al.  Image Representation Using 2D Gabor Wavelets , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[75]  D. W. Pravica,et al.  Reproducing kernel bounds for an advanced wavelet frame via the theta function , 2012 .

[76]  S. Zucker,et al.  The Curve Indicator Random Field: Curve Organization Via Edge Correlation , 2000 .

[77]  Steven W. Zucker,et al.  Third-Order Edge Statistics: Contour Continuation, Curvature, and Cortical Connections , 2013, NIPS.

[78]  Norbert Krüger,et al.  Collinearity and Parallelism are Statistically Significant Second-Order Relations of Complex Cell Responses , 1998, Neural Processing Letters.

[79]  L. Teixeira,et al.  Eye , 2013, AORN journal.

[80]  R. Duits,et al.  Left-invariant parabolic evolutions on SE(2) and contour enhancement via invertible orientation scores. Part II: Non-linear left-invariant diffusions on invertible orientation scores , 2010 .