Infinite horizon cancer treatment model with isoperimetrical constraint: existence of optimal solutions and numerical analysis

ABSTRACT In this paper, a class of infinite horizon optimal control problems with a mixed control-state isoperimetrical constraint, also interpreted as a budget constraint, is considered. The underlying dynamics is assumed to be affine-linear in control. The crucial idea which is followed in this paper is the choice of a weighted Sobolev space as the state space. For this class of problems, we establish an existence result and apply it to a bilinear model of optimal cancer treatment with an isoperimetrical constraint including the overall amount of drugs used during the whole therapy horizon. A numerical analysis of this model is provided by means of open source software package OCMat, which implements a continuation method for solving discounted infinite horizon optimal control problems.

[1]  H. Halkin Necessary conditions for optimal control problems with infinite horizons , 1974 .

[2]  D. Grass,et al.  Numerical computation of the optimal vector field: Exemplified by a fishery model , 2012, Journal of economic dynamics & control.

[3]  J. Cuaresma,et al.  Dynamic Systems, Economic Growth, and the Environment , 2010 .

[4]  Peter Kunkel,et al.  Numerical Solution of Infinite-Horizon Optimal-Control Problems , 2000 .

[5]  Urszula Ledzewicz,et al.  Optimal and suboptimal protocols for a mathematical model for tumor anti-angiogenesis in combination with chemotherapy. , 2011, Mathematical biosciences and engineering : MBE.

[6]  Heinz Bauer,et al.  Maß- und Integrationstheorie , 1992 .

[7]  B. Leimkuhler,et al.  Optimal control for mathematical models of cancer therapies : an application of geometric methods , 2015 .

[8]  J. Caulkins,et al.  Optimal Control of Nonlinear Processes: With Applications in Drugs, Corruption, and Terror , 2008 .

[9]  S. Aseev,et al.  The Pontryagin maximum principle and optimal economic growth problems , 2007 .

[10]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[11]  Valeriya Lykina,et al.  An Existence Theorem for a Class of Infinite Horizon Optimal Control Problems , 2016, J. Optim. Theory Appl..

[12]  E. Lee,et al.  Optimal control for nonlinear processes , 1961 .

[13]  S. Pickenhain,et al.  Weighted functional spaces approach in infinite horizon optimal control problems: A systematic analysis of hidden opportunities and advantages ☆ , 2017 .

[14]  Sabine Pickenhain,et al.  Budget-constrained infinite horizon optimal control problems with linear dynamics , 2016, 2016 IEEE 55th Conference on Decision and Control (CDC).

[15]  Sabine Pickenhain On Adequate Transversality Conditions for Infinite Horizon Optimal Control Problems—A Famous Example of Halkin , 2010 .

[16]  L. Grüne,et al.  Infinite Horizon Optimal Control , 2011 .

[17]  Frank H. Clarke,et al.  Shadow Prices and Duality for a Class of Optimal Control Problems , 1979 .

[18]  S. Kaniovski,et al.  The Problem of Optimal Endogenous Growth with Exhaustible Resources Revisited , 2013 .

[19]  J. Schwartz,et al.  Linear Operators. Part I: General Theory. , 1960 .

[20]  A Noether Theorem on Unimprovable Conservation Laws for Vector-Valued Optimization Problems in Control Theory , 2004, math/0411173.

[21]  Nico Tauchnitz The Pontryagin Maximum Principle for Nonlinear Infinite Horizon Optimal Control Problems with State Constraints , 2015, ArXiv.

[22]  S. Pickenhain,et al.  An indirect pseudospectral method for the solution of linear-quadratic optimal control problems with infinite horizon , 2016 .

[23]  Different interpretations of the improper integral objective in an infinite horizon control problem , 2008 .

[24]  D. Grass Numerical computation of the optimal vector field in a fishery model , 2010 .

[25]  Vladimir M. Veliov,et al.  Needle Variations in Infinite-Horizon Optimal Control , 2014 .

[26]  Maria do Rosário de Pinho,et al.  Optimal Control of Epidemiological SEIR models with L1-Objectives and Control-State Constraints , 2014 .

[27]  A. Zaslavski Turnpike properties in the calculus of variations and optimal control , 2005 .

[28]  Sabine Pickenhain,et al.  On the lower semicontinuity of functionals involving Lebesgue or improper Riemann integrals in infinite horizon optimal control problems , 2008 .

[29]  A. Zaslavski Turnpike Phenomenon and Infinite Horizon Optimal Control , 2014 .

[30]  Seng-Kee Chua,et al.  On Weighted Sobolev Spaces , 1996, Canadian Journal of Mathematics.

[31]  William W. Hager,et al.  Pseudospectral methods for solving infinite-horizon optimal control problems , 2011, Autom..