Pop-up light field: An interactive image-based modeling and rendering system

In this article, we present an image-based modeling and rendering system, which we call pop-up light field, that models a sparse light field using a set of coherent layers. In our system, the user specifies how many coherent layers should be modeled or popped up according to the scene complexity. A coherent layer is defined as a collection of corresponding planar regions in the light field images. A coherent layer can be rendered free of aliasing all by itself, or against other background layers. To construct coherent layers, we introduce a Bayesian approach, coherence matting, to estimate alpha matting around segmented layer boundaries by incorporating a coherence prior in order to maintain coherence across images.We have developed an intuitive and easy-to-use user interface (UI) to facilitate pop-up light field construction. The key to our UI is the concept of human-in-the-loop where the user specifies where aliasing occurs in the rendered image. The user input is reflected in the input light field images where pop-up layers can be modified. The user feedback is instant through a hardware-accelerated real-time pop-up light field renderer. Experimental results demonstrate that our system is capable of rendering anti-aliased novel views from a sparse light field.

[1]  Baining Guo,et al.  Feature-based light field morphing , 2002, ACM Trans. Graph..

[2]  Leonard McMillan,et al.  Dynamically reparameterized light fields , 2000, SIGGRAPH.

[3]  Vladimir Kolmogorov,et al.  Multi-camera Scene Reconstruction via Graph Cuts , 2002, ECCV.

[4]  Ken-ichi Anjyo,et al.  Tour into the picture: using a spidery mesh interface to make animation from a single image , 1997, SIGGRAPH.

[5]  David Salesin,et al.  A Bayesian approach to digital matting , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[6]  Katsushi Ikeuchi,et al.  Microfacet Billboarding , 2002, Rendering Techniques.

[7]  Frédo Durand,et al.  A gentle introduction to bilateral filtering and its applications , 2007, SIGGRAPH Courses.

[8]  Andrew W. Fitzgibbon,et al.  Image-based environment matting , 2002, SIGGRAPH '02.

[9]  Frédo Durand,et al.  Billboard clouds for extreme model simplification , 2003, ACM Trans. Graph..

[10]  Jitendra Malik,et al.  Modeling and Rendering Architecture from Photographs: A hybrid geometry- and image-based approach , 1996, SIGGRAPH.

[11]  Marc Levoy,et al.  Real-time 3D model acquisition , 2002, ACM Trans. Graph..

[12]  David Salesin,et al.  Video matting of complex scenes , 2002, SIGGRAPH.

[13]  James F. Blinn,et al.  Blue screen matting , 1996, SIGGRAPH.

[14]  Paul Rademacher,et al.  View-dependent geometry , 1999, SIGGRAPH.

[15]  Edward H. Adelson,et al.  Representing moving images with layers , 1994, IEEE Trans. Image Process..

[16]  Michael Bosse,et al.  Unstructured lumigraph rendering , 2001, SIGGRAPH.

[17]  Richard Szeliski,et al.  A layered approach to stereo reconstruction , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[18]  Richard Szeliski,et al.  The lumigraph , 1996, SIGGRAPH.

[19]  Paul A. Beardsley,et al.  Image-based 3D photography using opacity hulls , 2002, ACM Trans. Graph..

[20]  Tom Duff,et al.  Compositing digital images , 1984, SIGGRAPH.

[21]  Olivier D. Faugeras,et al.  Shape From Shading , 2006, Handbook of Mathematical Models in Computer Vision.

[22]  Marc Levoy,et al.  Light field rendering , 1996, SIGGRAPH.

[23]  Hans-Peter Seidel,et al.  High-Quality Interactive Lumigraph Rendering Through Warping , 2000, Graphics Interface.

[24]  Robert L. Stevenson,et al.  A Bayesian approach to image expansion for improved definitio , 1994, IEEE Trans. Image Process..

[25]  Richard Szeliski,et al.  Handling occlusions in dense multi-view stereo , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[26]  Ramesh Raskar,et al.  Image-based visual hulls , 2000, SIGGRAPH.

[27]  Richard Szeliski,et al.  Creating full view panoramic image mosaics and environment maps , 1997, SIGGRAPH.

[28]  I. Reid,et al.  Single view metrology , 1999, ICCV 1999.

[29]  Ian D. Reid,et al.  Single View Metrology , 2000, International Journal of Computer Vision.

[30]  John Snyder,et al.  Rendering with coherent layers , 1997, SIGGRAPH.

[31]  Richard Szeliski,et al.  Layered depth images , 1998, SIGGRAPH.

[32]  John Hart,et al.  ACM Transactions on Graphics , 2004, SIGGRAPH 2004.

[33]  Reinhard Koch,et al.  Plenoptic Modeling and Rendering from Image Sequences Taken by Hand-Held Camera , 1999, DAGM-Symposium.

[34]  Carlo Tomasi,et al.  Alpha estimation in natural images , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[35]  Leonard McMillan,et al.  A new reconstruction filter for undersampled light fields , 2003 .

[36]  Robert C. Bolles,et al.  Generalizing Epipolar-Plane Image Analysis on the spatiotemporal surface , 2004, International Journal of Computer Vision.

[37]  Harry Shum,et al.  Plenoptic sampling , 2000, SIGGRAPH.

[38]  Takeo Kanade,et al.  A robust subspace approach to layer extraction , 2002, Workshop on Motion and Video Computing, 2002. Proceedings..

[39]  Kiriakos N. Kutulakos,et al.  Plenoptic Image Editing , 2004, International Journal of Computer Vision.

[40]  DuffTom,et al.  Compositing digital images , 1984 .