Interval-excitation through impulse sequences. A technical lemma

We present a technical lemma that establishes, in a general framework, an interval-excitation property using a specific class of impulse sequences. According to such an interval-excitation property, an impulse applied within a time interval generates excitation within the same interval. This property does not hold for arbitrary exciting sequences. The lemma is a unified statement of previous results corresponding to particular choices of the exciting sequence.

[1]  R. Bitmead,et al.  Nonlinear Dynamics in Adaptive Control: Chaotic and Periodic Stabilization , 1987 .

[2]  Petre Stoica,et al.  Decentralized Control , 2018, The Control Systems Handbook.

[3]  Stephen P. Boyd,et al.  Necessary and sufficient conditions for parameter convergence in adaptive control , 1986, Autom..

[4]  G. Kreisselmeier,et al.  Stable adaptive regulation of arbitrary nth-order plants , 1986 .

[5]  Jan Willem Polderman,et al.  A state space approach to the problem of adaptive pole assignment , 1989, Math. Control. Signals Syst..

[6]  Anuradha M. Annaswamy,et al.  Robust Adaptive Control , 1984, 1984 American Control Conference.

[7]  B. Anderson Exponential stability of linear equations arising in adaptive identification , 1977 .

[8]  R. Cristi,et al.  Global stability of adaptive pole placement algorithms , 1985 .

[9]  Richard M. Johnstone,et al.  Global adaptive pole positioning , 1985, IEEE Transactions on Automatic Control.

[10]  M. M'Saad,et al.  A cautious approach to robust adaptive regulation , 1988 .

[11]  M. M'Saad,et al.  Robustness of pole placement direct adaptive control for time-varying plants , 1988 .

[12]  Graham C. Goodwin,et al.  Adaptive filtering prediction and control , 1984 .

[13]  M. M'Saad,et al.  A globally convergent pole placement indirect adaptive controller , 1987 .

[14]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[15]  Anuradha M. Annaswamy,et al.  Stable Adaptive Systems , 1989 .

[16]  Robert R. Bitmead,et al.  Persistence of excitation conditions and the convergence of adaptive schemes , 1984, IEEE Trans. Inf. Theory.

[17]  G. Kreisselmeier An indirect adaptive controller with a self-excitation capability , 1989 .

[18]  Petros A. Ioannou,et al.  A stable indirect adaptive control scheme for first-order plants with no prior knowledge on the parameters , 1993, IEEE Trans. Autom. Control..

[19]  Roberto Cristi Internal persistency of excitation in indirect adaptive control , 1987 .

[20]  F. Giri,et al.  Pole placement direct adaptive control for time-varying ill-modeled plants , 1990 .

[21]  Brian D. O. Anderson,et al.  Adaptive systems, lack of persistency of excitation and bursting phenomena , 1985, Autom..

[22]  K. Narendra,et al.  Persistent excitation in adaptive systems , 1987 .

[23]  Iven M. Y. Mareels,et al.  Non-linear dynamics in adaptive control: Chaotic and periodic stabilization , 1986, Autom..

[24]  Fouad Giri,et al.  Stable pole placement direct adaptive control for systems with arbitrary zeros , 1988 .

[25]  Richard M. Johnstone,et al.  Exponential convergence of recursive least squares with exponential forgetting factor , 1982, 1982 21st IEEE Conference on Decision and Control.

[26]  S. Sastry,et al.  Adaptive Control: Stability, Convergence and Robustness , 1989 .

[27]  G. Goodwin,et al.  Persistency of excitation in the presence of possibly unbounded signals , 1985 .

[28]  Mohammed M'Saad,et al.  On the robustness of discrete-time indirect adaptive (linear) controllers , 1988, Autom..

[29]  Mohammed M'Saad,et al.  Parameter Estimation Aspects in Adaptive Control , 1988 .