Management, presentation and interpretation of genome scans using GSCANDB

MOTIVATION Advances in high-throughput genotyping have made it possible to carry out genome-wide association studies using very high densities of genetic markers. This has led to the problem of the storage, management, quality control, presentation and interpretation of results. In order to achieve a successful outcome, it may be necessary to analyse the data in different ways and compare the results with genome annotations and other genome scans. RESULTS We created GSCANDB, a database for genome scan data, using a MySQL backend and Perl-CGI web interface. It displays genome scans of multiple phenotypes analysed in different ways and projected onto genome annotations derived from EnsMart. The current version is optimized for analysis of mouse data, but is customizable to other species. AVAILABILITY Source code and example data are available under the GPL, in versions tailored to either human or mouse association studies, from http://gscan.well.ox.ac.uk/software.

[1]  A. C. Collins,et al.  A method for fine mapping quantitative trait loci in outbred animal stocks. , 2000, Proceedings of the National Academy of Sciences of the United States of America.

[2]  Claudine Médigue,et al.  MICheck: a web tool for fast checking of syntactic annotations of bacterial genomes , 2005, Nucleic Acids Res..

[3]  David Haussler,et al.  The UCSC genome browser database: update 2007 , 2006, Nucleic Acids Res..

[4]  Lon R. Cardon,et al.  GOLDsurfer: three dimensional display of linkage disequilibrium , 2004, Bioinform..

[5]  Terrence S. Furey,et al.  The UCSC Genome Browser Database: update 2006 , 2005, Nucleic Acids Res..

[6]  Mark Daly,et al.  Haploview: analysis and visualization of LD and haplotype maps , 2005, Bioinform..

[7]  Jintao Wang,et al.  Genetic correlates of gene expression in recombinant inbred strains , 2007, Neuroinformatics.

[8]  M. Daly,et al.  Genome-wide association studies for common diseases and complex traits , 2005, Nature Reviews Genetics.

[9]  Judith A. Blake,et al.  The Mouse Genome Database (MGD): from genes to mice—a community resource for mouse biology , 2004, Nucleic Acids Res..

[10]  Robert W. Williams,et al.  WebQTL - Web-based complex trait analysis , 2003, Neuroinformatics.

[11]  Richard Mott,et al.  Genomic clusters, putative pathogen recognition molecules, and antimicrobial genes are induced by infection of C. elegans with M. nematophilum. , 2006, Genome research.

[12]  B. Paigen,et al.  Bioinformatics toolbox for narrowing rodent quantitative trait loci. , 2005, Trends in genetics : TIG.

[13]  S. Chin,et al.  Human and mouse oligonucleotide-based array CGH , 2005, Nucleic acids research.

[14]  E. Birney,et al.  EnsMart: a generic system for fast and flexible access to biological data. , 2003, Genome research.

[15]  Qunfeng Dong,et al.  xGDB: open-source computational infrastructure for the integrated evaluation and analysis of genome features , 2006, Genome Biology.

[16]  R. Mott Finding the molecular basis of complex genetic variation in humans and mice , 2006, Philosophical Transactions of the Royal Society B: Biological Sciences.

[17]  Martin S. Taylor,et al.  Genome-wide genetic association of complex traits in heterogeneous stock mice , 2006, Nature Genetics.

[18]  Thomas A Trikalinos,et al.  Implications of small effect sizes of individual genetic variants on the design and interpretation of genetic association studies of complex diseases. , 2006, American journal of epidemiology.

[19]  S. Gabriel,et al.  Efficiency and power in genetic association studies , 2005, Nature Genetics.

[20]  Hao Wu,et al.  R/qtl: QTL Mapping in Experimental Crosses , 2003, Bioinform..

[21]  S. Lewis,et al.  The generic genome browser: a building block for a model organism system database. , 2002, Genome research.

[22]  Andreas Prlic,et al.  Ensembl 2006 , 2005, Nucleic Acids Res..