iNavigation: an image based indoor navigation system

This paper presents a novel image-based indoor navigation web application designed for mobile phone. It is inspired by Google Street View that features 360° imagery for navigation. Ordinary data collection of image based navigation systems implements panorama cameras, so it is difficult to be extended to indoor environment. On the other hand, they cannot provide timely updates because it requires immense image data. This paper introduces a ‘proof of concept’ which only uses ordinary organized photo collections instead of panoramic photo to guide people through the building. It implements SIFT (scale-invariant feature transform) feature detection and ANN (approximately nearest neighbor) search to provide positioning service. People can upload query images to obtain current position. It also enables information sharing by using IPM (inverse perspective mapping) technique to figure out distance from a single query image, and update the query image into the image collection correctly based on the distance calculation.

[1]  Luo Juan,et al.  A comparison of SIFT, PCA-SIFT and SURF , 2009 .

[2]  Stephan Winter,et al.  Spatial Information Theory, 8th International Conference, COSIT 2007, Melbourne, Australia, September 19-23, 2007, Proceedings , 2007, COSIT.

[3]  Edward Jones,et al.  Distance determination for an automobile environment using Inverse Perspective Mapping in OpenCV , 2010 .

[4]  G.B. Giannakis,et al.  Localization via ultra-wideband radios: a look at positioning aspects for future sensor networks , 2005, IEEE Signal Processing Magazine.

[5]  Andrew Zisserman,et al.  Video Google: a text retrieval approach to object matching in videos , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[6]  David Nistér,et al.  Scalable Recognition with a Vocabulary Tree , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[7]  David G. Lowe,et al.  Shape indexing using approximate nearest-neighbour search in high-dimensional spaces , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[8]  Luc Van Gool,et al.  SURF: Speeded Up Robust Features , 2006, ECCV.

[9]  David G. Lowe,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004, International Journal of Computer Vision.

[10]  S. Govindarajulu,et al.  A Comparison of SIFT, PCA-SIFT and SURF , 2012 .

[11]  Rosen Ivanov,et al.  Indoor navigation system for visually impaired , 2010, CompSysTech '10.

[12]  Andrew Zisserman,et al.  Multi-view Matching for Unordered Image Sets, or "How Do I Organize My Holiday Snaps?" , 2002, ECCV.

[13]  Lee Copeland,et al.  A Practitioner's Guide to Software Test Design , 2003 .

[14]  David G. Lowe,et al.  Fast Approximate Nearest Neighbors with Automatic Algorithm Configuration , 2009, VISAPP.

[15]  Bernt Schiele,et al.  Local features for object class recognition , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[16]  Phillip Tomé,et al.  Indoor Navigation of Emergency Agents , 2007 .

[17]  Philippe Jacquet,et al.  Indoor positioning in Wireless LANS using compressive sensing signal-strength fingerprints , 2011, 2011 19th European Signal Processing Conference.

[18]  Geoff Wyvill,et al.  SIFT and SURF Performance Evaluation against Various Image Deformations on Benchmark Dataset , 2011, 2011 International Conference on Digital Image Computing: Techniques and Applications.

[19]  Cao Maoyong,et al.  Super-resolution time of arrival estimation for indoor geolocation based on IEEE 802.11 a/g , 2008, 2008 7th World Congress on Intelligent Control and Automation.

[20]  Stephen Travis Pope,et al.  A cookbook for using the model-view controller user interface paradigm in Smalltalk-80 , 1988 .

[21]  M. Matsumoto,et al.  RFID Indoor Positioning Based on Probabilistic RFID Map and Kalman Filtering , 2007 .

[22]  闫玉才 Navigation system and method , 2012 .

[23]  Nicole Immorlica,et al.  Locality-sensitive hashing scheme based on p-stable distributions , 2004, SCG '04.

[24]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[25]  Alan C. Bovik,et al.  Mean squared error: Love it or leave it? A new look at Signal Fidelity Measures , 2009, IEEE Signal Processing Magazine.

[26]  Robin Hess An Open-Source SIFT Library , 2010 .

[27]  Sungho Jo,et al.  Real-time building of a 3D model of an indoor environment with a mobile robot , 2011, 2011 11th International Conference on Control, Automation and Systems.

[28]  Jiri Matas,et al.  Robust wide-baseline stereo from maximally stable extremal regions , 2004, Image Vis. Comput..

[29]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[30]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[31]  Johan Hjelm,et al.  Local Positioning Systems: LBS Applications and Services , 2006 .

[32]  Andy Hopper,et al.  The active badge location system , 1992, TOIS.

[33]  Kiyoharu Aizawa,et al.  Image-based indoor positioning system: fast image matching using omnidirectional panoramic images , 2010, MPVA '10.

[34]  Hiroshi Murase,et al.  Visual learning and recognition of 3-d objects from appearance , 2005, International Journal of Computer Vision.

[35]  Yunhao Liu,et al.  LANDMARC: Indoor Location Sensing Using Active RFID , 2004, Proceedings of the First IEEE International Conference on Pervasive Computing and Communications, 2003. (PerCom 2003)..

[36]  Rob Hess,et al.  An open-source SIFTLibrary , 2010, ACM Multimedia.

[37]  Chadly Marouane,et al.  Indoor positioning using smartphone camera , 2011, 2011 International Conference on Indoor Positioning and Indoor Navigation.

[38]  Sameer A. Nene,et al.  Columbia Object Image Library (COIL100) , 1996 .

[39]  Henning Olesen,et al.  Bluetooth enables in-door mobile location services , 2003, The 57th IEEE Semiannual Vehicular Technology Conference, 2003. VTC 2003-Spring..

[40]  Yan Ke,et al.  PCA-SIFT: a more distinctive representation for local image descriptors , 2004, CVPR 2004.

[41]  Michael Isard,et al.  Total Recall: Automatic Query Expansion with a Generative Feature Model for Object Retrieval , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[42]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[43]  Cordelia Schmid,et al.  A Performance Evaluation of Local Descriptors , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[44]  Alistair Cockburn,et al.  Writing Effective Use Cases , 2000 .

[45]  Fiona Fui-Hoon Nah,et al.  A study on tolerable waiting time: how long are Web users willing to wait? , 2004, AMCIS.

[46]  Pietro Perona,et al.  Evaluation of Features Detectors and Descriptors based on 3D Objects , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[47]  Richard Hartley,et al.  Localisation using an image-map , 2004 .

[48]  Gernot A. Fink,et al.  Sift-based Camera Localization using Reference Objects for Application in Multi-camera Environments and Robotics , 2012, ICPRAM.

[49]  Toru Ishikawa,et al.  Showing Where To Go by Maps or Pictures: An Empirical Case Study at Subway Exits , 2009, COSIT.

[50]  Yan Ke,et al.  Efficient Near-duplicate Detection and Sub-image Retrieval , 2004 .

[51]  Cordelia Schmid,et al.  Evaluation of Interest Point Detectors , 2000, International Journal of Computer Vision.

[52]  Sameer A. Nene,et al.  A simple algorithm for nearest neighbor search in high dimensions , 1997 .

[53]  Cordelia Schmid,et al.  An Affine Invariant Interest Point Detector , 2002, ECCV.

[54]  Heng Tao Shen,et al.  Principal Component Analysis , 2009, Encyclopedia of Biometrics.

[55]  Yong-Moo Kwon,et al.  Indoor Environment Modeling for Interactive VR - Based Robot Security Service , 2006, ICAT.

[56]  Mehmet N. Aydin,et al.  Development of an Indoor Navigation System Using NFC Technology , 2011, 2011 Fourth International Conference on Information and Computing.

[57]  Derek Bradley,et al.  Image-based navigation in real environments using panoramas , 2005, IEEE International Workshop on Haptic Audio Visual Environments and their Applications.

[58]  Richard Szeliski,et al.  Multi-image matching using multi-scale oriented patches , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[59]  C. Schmid,et al.  Indexing based on scale invariant interest points , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[60]  Shahrokh Valaee,et al.  Compressive Sensing Based Positioning Using RSS of WLAN Access Points , 2010, 2010 Proceedings IEEE INFOCOM.

[61]  Alexandr Andoni,et al.  Near-Optimal Hashing Algorithms for Approximate Nearest Neighbor in High Dimensions , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).

[62]  Jean-Michel Morel,et al.  ASIFT: A New Framework for Fully Affine Invariant Image Comparison , 2009, SIAM J. Imaging Sci..

[63]  Richard Szeliski,et al.  Computer Vision - Algorithms and Applications , 2011, Texts in Computer Science.

[64]  Tony Cornford,et al.  Project Research in Information Systems , 1996 .

[65]  Michael Isard,et al.  General Theory , 1969 .

[66]  Eugene Miya,et al.  On "Software engineering" , 1985, SOEN.

[67]  Michael Brady,et al.  Saliency, Scale and Image Description , 2001, International Journal of Computer Vision.

[68]  Antonio Torralba,et al.  LabelMe: A Database and Web-Based Tool for Image Annotation , 2008, International Journal of Computer Vision.

[69]  Cordelia Schmid,et al.  Scale & Affine Invariant Interest Point Detectors , 2004, International Journal of Computer Vision.

[70]  Dieter Fox,et al.  Interactive 3D modeling of indoor environments with a consumer depth camera , 2011, UbiComp '11.

[71]  J. Little,et al.  Inverse perspective mapping simplifies optical flow computation and obstacle detection , 2004, Biological Cybernetics.

[72]  Ruizhi Chen,et al.  Visual-aided Two-dimensional Pedestrian Indoor Navigation with a Smartphone , 2011 .

[73]  Nabeel Tahir,et al.  INTERNATIONAL JOURNAL OF IMAGE PROCESSING (IJIP) , 2012 .

[74]  Paramvir Bahl,et al.  RADAR: an in-building RF-based user location and tracking system , 2000, Proceedings IEEE INFOCOM 2000. Conference on Computer Communications. Nineteenth Annual Joint Conference of the IEEE Computer and Communications Societies (Cat. No.00CH37064).

[75]  A. Chawla,et al.  COMPARATIVE STUDY OF IMAGE MATCHING ALGORITHMS , 2010 .

[76]  Trevor Darrell,et al.  Efficient image matching with distributions of local invariant features , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[77]  Akira Fukuda,et al.  Wireless LAN based indoor positioning system WiPS and its simulation , 2003, 2003 IEEE Pacific Rim Conference on Communications Computers and Signal Processing (PACRIM 2003) (Cat. No.03CH37490).

[78]  Michael Isard,et al.  Lost in quantization: Improving particular object retrieval in large scale image databases , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[79]  Lionel Moisan,et al.  A Probabilistic Criterion to Detect Rigid Point Matches Between Two Images and Estimate the Fundamental Matrix , 2004, International Journal of Computer Vision.

[80]  Christian Kray,et al.  Presenting route instructions on mobile devices , 2003, IUI '03.

[81]  Laurent Amsaleg,et al.  Locality sensitive hashing: A comparison of hash function types and querying mechanisms , 2010, Pattern Recognit. Lett..

[82]  X. Jia,et al.  An indoor wireless positioning system based on wireless local area network infrastructure , 2003 .

[83]  Tony Lindeberg,et al.  Feature Detection with Automatic Scale Selection , 1998, International Journal of Computer Vision.

[84]  Cordelia Schmid,et al.  A Comparison of Affine Region Detectors , 2005, International Journal of Computer Vision.

[85]  B. Merminod,et al.  Personal Navigation System for Indoor Applications , 2003 .

[86]  Georg Gartner,et al.  A Survey of Mobile Indoor Navigation Systems , 2009 .

[87]  Hideo Saito,et al.  Image Based View Localization System Retrieving from a Panorama Database by SURF , 2009, MVA.

[88]  John A. Hoxmeier,et al.  System Response Time and User Satisfaction: An Experimental Study of Browser-based Applications , 2000 .

[89]  Hassan A. Karimi Universal Navigation on Smartphones , 2011 .

[90]  Tony Lindeberg,et al.  Shape-adapted smoothing in estimation of 3-D shape cues from affine deformations of local 2-D brightness structure , 1997, Image Vis. Comput..

[91]  Adam Baumberg,et al.  Reliable feature matching across widely separated views , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[92]  Edward J. Delp,et al.  An overview of problems in image-based location awareness and navigation , 2004, IS&T/SPIE Electronic Imaging.

[93]  L. Miller Indoor Navigation for First Responders : A Feasibility Study , 2006 .

[94]  Michael J. Swain,et al.  Color indexing , 1991, International Journal of Computer Vision.

[95]  I. Jolliffe Principal Component Analysis , 2002 .

[96]  Petri Lankoski,et al.  What should it do?: key isssues in navigation interface design for small screen devices , 2002, CHI Extended Abstracts.

[97]  Takeo Kanade,et al.  Image matching in large scale indoor environment , 2009, 2009 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops.

[98]  S. Reid The Art of Software Testing, Second edition. Glenford J. Myers. Revised and updated by Tom Badgett and Todd M. Thomas, with Corey Sandler. John Wiley and Sons, New Jersey, U.S.A., 2004. ISBN: 0-471-46912-2, pp 234: Book Reviews , 2005 .