Object representation-by-fragments in the visual system: a neurocomputational model

The paper presents a model of visual object representation by fragment views, rather than canonically-oriented whole-object views used in Chorus systems. Following recent results (Sheinberg and Logothetis, 2001) on object representation in inferotemporal cells during free viewing, we implemented a simplified attentional system which yields fragment views of objects, which are then used to train object-tuned modules. Each object is represented by a complete RBF module, instantiating a representation space. We show that such a system can produce distributed representations, like Chorus of views systems, and that dissociating objects from retinotopy enables a fuller model of scene geometry analysis to be advanced.

[1]  Bartlett W. Mel SEEMORE: Combining Color, Shape, and Texture Histogramming in a Neurally Inspired Approach to Visual Object Recognition , 1997, Neural Computation.

[2]  Constance S. Royden,et al.  Motion perception , 1998 .

[3]  J. Hegdé,et al.  Selectivity for Complex Shapes in Primate Visual Area V2 , 2000, The Journal of Neuroscience.

[4]  D C Van Essen,et al.  Information processing in the primate visual system: an integrated systems perspective. , 1992, Science.

[5]  James R. Williamson,et al.  Gaussian ARTMAP: A Neural Network for Fast Incremental Learning of Noisy Multidimensional Maps , 1996, Neural Networks.

[6]  D. Hubel,et al.  Segregation of form, color, movement, and depth: anatomy, physiology, and perception. , 1988, Science.

[7]  J. B. Levitt,et al.  Functional properties of neurons in macaque area V3. , 1997, Journal of neurophysiology.

[8]  E. Adelson,et al.  The analysis of moving visual patterns , 1985 .

[9]  Tomaso Poggio,et al.  Models of object recognition , 2000, Nature Neuroscience.

[10]  Trichur Raman Vidyasagar A neuronal model of attentional spotlight: parietal guiding the temporal , 1999, Brain Research Reviews.

[11]  James V. Stone Object recognition using spatiotemporal signatures , 1998, Vision Research.

[12]  John K. Tsotsos,et al.  Modeling Visual Attention via Selective Tuning , 1995, Artif. Intell..

[13]  J. I. Nelson Visual scene perception: neurophysiology , 1998 .

[14]  David L. Sheinberg,et al.  Noticing Familiar Objects in Real World Scenes: The Role of Temporal Cortical Neurons in Natural Vision , 2001, The Journal of Neuroscience.

[15]  Heekuck Oh,et al.  Neural Networks for Pattern Recognition , 1993, Adv. Comput..

[16]  R. Desimone,et al.  Object and place memory in the macaque entorhinal cortex. , 1997, Journal of neurophysiology.

[17]  M. Corbetta,et al.  Control of goal-directed and stimulus-driven attention in the brain , 2002, Nature Reviews Neuroscience.

[18]  Gustavo Deco,et al.  Computational neuroscience of vision , 2002 .

[19]  R A Andersen,et al.  Multimodal integration for the representation of space in the posterior parietal cortex. , 1997, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[20]  Driss Boussaoud,et al.  Frontal lobe mechanisms subserving vision-for-action versus vision-for-perception , 1995, Behavioural Brain Research.

[21]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[22]  S Ullman,et al.  Shifts in selective visual attention: towards the underlying neural circuitry. , 1985, Human neurobiology.

[23]  Shimon Edelman,et al.  Representation and recognition in vision , 1999 .

[24]  S. Edelman Constraining the neural representation of the visual world , 2002, Trends in Cognitive Sciences.

[25]  J H Maunsell,et al.  The Brain's Visual World: Representation of Visual Targets in Cerebral Cortex , 1995, Science.

[26]  O. Andreassen,et al.  Mice Deficient in Cellular Glutathione Peroxidase Show Increased Vulnerability to Malonate, 3-Nitropropionic Acid, and 1-Methyl-4-Phenyl-1,2,5,6-Tetrahydropyridine , 2000, The Journal of Neuroscience.