Improving Place Recognition Using Dynamic Object Detection

We present a novel approach to place recognition well-suited to environments with many dynamic objects--objects that may or may not be present in an agent's subsequent visits. By incorporating an object-detecting preprocessing step, our approach yields high-quality place representations that incorporate object information. Not only does this result in significantly improved place recognition in dynamic environments, it also significantly reduces memory/storage requirements, which may increase the effectiveness of mobile agents with limited resources.

[1]  Luis Miguel Bergasa,et al.  Fast and effective visual place recognition using binary codes and disparity information , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[2]  Andreas Geiger,et al.  Vision meets robotics: The KITTI dataset , 2013, Int. J. Robotics Res..

[3]  Bing Li,et al.  An Assistive Indoor Navigation System for the Visually Impaired in Multi-Floor Environments , 2017, 2017 IEEE 7th Annual International Conference on CYBER Technology in Automation, Control, and Intelligent Systems (CYBER).

[4]  Niko Sünderhauf,et al.  BRIEF-Gist - closing the loop by simple means , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[5]  P ? ? ? ? ? ? ? % ? ? ? ? , 1991 .

[6]  Antonios Gasteratos,et al.  Learning spatially semantic representations for cognitive robot navigation , 2013, Robotics Auton. Syst..

[7]  Wei Liu,et al.  SSD: Single Shot MultiBox Detector , 2015, ECCV.

[8]  Huanxin Zou,et al.  Use of Roadway Scene Semantic Information and Geometry-Preserving Landmark Pairs to Improve Visual Place Recognition in Changing Environments , 2017, IEEE Access.

[9]  Hong Zhang,et al.  Fast-SeqSLAM: A fast appearance based place recognition algorithm , 2017, 2017 IEEE International Conference on Robotics and Automation (ICRA).

[10]  Pierre Vandergheynst,et al.  FREAK: Fast Retina Keypoint , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[11]  Guang-Zhong Yang,et al.  Feature Co-occurrence Maps: Appearance-based localisation throughout the day , 2013, 2013 IEEE International Conference on Robotics and Automation.

[12]  Simon Lacroix,et al.  Probabilistic place recognition with covisibility maps , 2013, 2013 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[13]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[14]  Ross B. Girshick,et al.  Fast R-CNN , 2015, 1504.08083.

[15]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[16]  Kaiming He,et al.  Faster R-CNN: Towards Real-Time Object Detection with Region Proposal Networks , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[17]  Paul Newman,et al.  Appearance-only SLAM at large scale with FAB-MAP 2.0 , 2011, Int. J. Robotics Res..

[18]  Francisco Angel Moreno,et al.  The Málaga urban dataset: High-rate stereo and LiDAR in a realistic urban scenario , 2014, Int. J. Robotics Res..

[19]  Ian D. Reid,et al.  Article in Press Robotics and Autonomous Systems ( ) – Robotics and Autonomous Systems a Comparison of Loop Closing Techniques in Monocular Slam , 2022 .

[20]  Niko Sünderhauf,et al.  On the performance of ConvNet features for place recognition , 2015, 2015 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[21]  Juan Pablo Munoz,et al.  Collaborative Appearance-Based Place Recognition and Improving Place Recognition Using Detection of Dynamic Objects , 2018 .

[22]  Roland Siegwart,et al.  BRISK: Binary Robust invariant scalable keypoints , 2011, 2011 International Conference on Computer Vision.

[23]  A. Gasteratos,et al.  Object recognition using saliency maps and HTM learning , 2012, 2012 IEEE International Conference on Imaging Systems and Techniques Proceedings.

[24]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[25]  Stephen M. Smith,et al.  SUSAN—A New Approach to Low Level Image Processing , 1997, International Journal of Computer Vision.

[26]  Bing Li,et al.  Demo: Assisting Visually Impaired People Navigate Indoors , 2016, IJCAI.

[27]  Darius Burschka,et al.  Adaptive and Generic Corner Detection Based on the Accelerated Segment Test , 2010, ECCV.

[28]  Michael Milford,et al.  Convolutional Neural Network-based Place Recognition , 2014, ICRA 2014.

[29]  Robert C. Bolles,et al.  Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography , 1981, CACM.

[30]  Vincent Lepetit,et al.  BRIEF: Binary Robust Independent Elementary Features , 2010, ECCV.

[31]  Antonios Gasteratos,et al.  Semantic maps from multiple visual cues , 2017, Expert Syst. Appl..

[32]  Peter I. Corke,et al.  All-environment visual place recognition with SMART , 2014, 2014 IEEE International Conference on Robotics and Automation (ICRA).

[33]  Pietro Perona,et al.  A Bayesian hierarchical model for learning natural scene categories , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[34]  Gordon Wyeth,et al.  SeqSLAM: Visual route-based navigation for sunny summer days and stormy winter nights , 2012, 2012 IEEE International Conference on Robotics and Automation.

[35]  Antonio M. López,et al.  The SYNTHIA Dataset: A Large Collection of Synthetic Images for Semantic Segmentation of Urban Scenes , 2016, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[36]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[37]  Illah R. Nourbakhsh,et al.  Appearance-based place recognition for topological localization , 2000, Proceedings 2000 ICRA. Millennium Conference. IEEE International Conference on Robotics and Automation. Symposia Proceedings (Cat. No.00CH37065).

[38]  Gary R. Bradski,et al.  ORB: An efficient alternative to SIFT or SURF , 2011, 2011 International Conference on Computer Vision.

[39]  Pietro Perona,et al.  Microsoft COCO: Common Objects in Context , 2014, ECCV.

[40]  Ali Farhadi,et al.  You Only Look Once: Unified, Real-Time Object Detection , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[41]  Luc Van Gool,et al.  Speeded-Up Robust Features (SURF) , 2008, Comput. Vis. Image Underst..

[42]  J. M. M. Montiel,et al.  ORB-SLAM: A Versatile and Accurate Monocular SLAM System , 2015, IEEE Transactions on Robotics.

[43]  Tomohiro Shibata,et al.  High performance loop closure detection using bag of word pairs , 2016, Robotics Auton. Syst..

[44]  Andrew Zisserman,et al.  Video Google: a text retrieval approach to object matching in videos , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[45]  David Nistér,et al.  Scalable Recognition with a Vocabulary Tree , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[46]  Tom Drummond,et al.  Machine Learning for High-Speed Corner Detection , 2006, ECCV.

[47]  Dorian Gálvez-López,et al.  Bags of Binary Words for Fast Place Recognition in Image Sequences , 2012, IEEE Transactions on Robotics.