暂无分享,去创建一个
Paul F. Tupper | Pei Wu | David Bryant | P. Tupper | David Bryant | Pei Wu
[1] David Ellis,et al. An Approximate Vertex-Isoperimetric Inequality for r-sets , 2013, Electron. J. Comb..
[2] Assaf Naor,et al. The integrality gap of the Goemans-Linial SDP relaxation for sparsest cut is at least a constant multiple of √log n , 2017, STOC.
[3] Anthony Weston,et al. Strict p-negative type of a metric space , 2009, 0901.0695.
[4] Michel Deza,et al. Geometry of cuts and metrics , 2009, Algorithms and combinatorics.
[5] Y. Rabani,et al. Improved lower bounds for embeddings into L 1 , 2006, SODA 2006.
[6] Nisheeth K. Vishnoi,et al. The unique games conjecture, integrality gap for cut problems and embeddability of negative type metrics into l/sub 1/ , 2005, 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05).
[7] Paul F. Tupper,et al. Diversities and the Geometry of Hypergraphs , 2013, Discret. Math. Theor. Comput. Sci..
[8] P. Tupper,et al. Open Problem Statement: Minimal Distortion Embeddings of Diversities in $\ell_1$ , 2017, 1712.01960.
[9] A. Hora,et al. Distance-Regular Graphs , 2007 .
[10] James R. Lee,et al. Euclidean distortion and the sparsest cut , 2005, STOC '05.
[11] B. Piatek. On the gluing of hyperconvex metrics and diversities , 2014 .
[12] Yuval Rabani,et al. Improved lower bounds for embeddings into L1 , 2006, SODA '06.
[13] Additive combination spaces , 2013, 1308.3293.
[14] An approximate isoperimetric inequality for r-sets , 2012, 1203.3699.
[15] P. Tupper,et al. Constant Distortion Embeddings of Symmetric Diversities , 2016, 1604.01863.
[16] Robert Krauthgamer,et al. Measured Descent: A New Embedding Method for Finite Metrics , 2004, FOCS.
[17] James R. Lee,et al. Extending Lipschitz functions via random metric partitions , 2005 .
[18] B. Piatek,et al. Diversities, hyperconvexity and fixed points , 2013, 1303.7146.
[19] James R. Lee,et al. Metric structures in L1: dimension, snowflakes, and average distortion , 2005, Eur. J. Comb..
[20] Nisheeth K. Vishnoi,et al. The Unique Games Conjecture, Integrality Gap for Cut Problems and Embeddability of Negative Type Metrics into l1 , 2005, FOCS.
[21] I. J. Schoenberg,et al. Metric spaces and positive definite functions , 1938 .
[22] P. Tupper,et al. Hyperconvexity and tight-span theory for diversities , 2010, 1006.1095.
[23] Andrew Poelstra. On the Topological and Uniform Structure of Diversities , 2013 .
[24] James R. Lee,et al. Metric Structures in L1: Dimension, Snowflakes, and Average Distortion , 2004, LATIN.
[25] I. J. Schoenberg. Remarks to Maurice Frechet's Article ``Sur La Definition Axiomatique D'Une Classe D'Espace Distances Vectoriellement Applicable Sur L'Espace De Hilbert , 1935 .
[26] J. Bourgain. On lipschitz embedding of finite metric spaces in Hilbert space , 1985 .
[27] Diversities and Conformities , 2013, 1307.1897.
[28] A. Nies,et al. A Universal Separable Diversity , 2015, 1509.07173.