User Preference Dynamics on Evolving Social Networks - Learning, Modeling and Prediction

The preferences adopted by individuals are constantly modified as these are driven by new experiences, natural life evolution and, mainly, influence from friends. Studying these temporal dynamics of user preferences has become increasingly important for personalization tasks. Online social networks contain rich information about social interactions and relations, becoming essential source of knowledge for the understanding of user preferences evolution. In this thesis, we investigate the interplay between user preferences and social networks over time. We use temporal networks to analyze the evolution of social relationships and propose strategies to detect changes in the network structure based on node centrality. Our findings show that we can predict user preference changes by just observing how her social network structure evolves over time.

[1]  G. B. A. Barab'asi Competition and multiscaling in evolving networks , 2000, cond-mat/0011029.

[2]  Myra Spiliopoulou,et al.  xStreams: Recommending Items to Users with Time-evolving Preferences , 2014, WIMS '14.

[3]  Charu C. Aggarwal,et al.  Recommender Systems: The Textbook , 2016 .

[4]  Jianmin Wang,et al.  Inferring Continuous Dynamic Social Influence and Personal Preference for Temporal Behavior Prediction , 2014, Proc. VLDB Endow..

[5]  João Gama,et al.  Sampling massive streaming call graphs , 2016, SAC.

[6]  Charu C. Aggarwal,et al.  Event Detection in Social Streams , 2012, SDM.

[7]  João Gama,et al.  Detecting Events in Evolving Social Networks through Node Centrality Analysis , 2016, STREAMEVOLV@ECML-PKDD.

[8]  Hakim Hacid,et al.  A predictive model for the temporal dynamics of information diffusion in online social networks , 2012, WWW.

[9]  Xin Liu,et al.  Modeling Users' Dynamic Preference for Personalized Recommendation , 2015, IJCAI.

[10]  Pabitra Mitra,et al.  Feature weighting in content based recommendation system using social network analysis , 2008, WWW.

[11]  Jure Leskovec,et al.  Online Actions with Offline Impact: How Online Social Networks Influence Online and Offline User Behavior , 2016, WSDM.

[12]  João Gama,et al.  Online Social Networks Event Detection: A Survey , 2016, Solving Large Scale Learning Tasks.

[13]  Steve Harenberg,et al.  Anomaly detection in dynamic networks: a survey , 2015 .

[14]  Reza Zafarani,et al.  Evaluation without ground truth in social media research , 2015, Commun. ACM.

[15]  Gian Paolo Rossi,et al.  Follow the "Mastodon": Structure and Evolution of a Decentralized Online Social Network , 2018, ICWSM.

[16]  Werner Kießling,et al.  A Preference-Driven Database Approach to Reciprocal User Recommendations in Online Social Networks , 2016, DEXA.

[17]  Haewoon Kwak,et al.  Fragile online relationship: a first look at unfollow dynamics in twitter , 2011, CHI.

[18]  Philippe Preux,et al.  Exploiting Social Information in Pairwise Preference Recommender System , 2016, J. Inf. Data Manag..

[19]  Charu C. Aggarwal,et al.  On Node Classification in Dynamic Content-based Networks , 2011, SDM.

[20]  Muhammad Imran,et al.  A Robust Framework for Classifying Evolving Document Streams in an Expert-Machine-Crowd Setting , 2016, 2016 IEEE 16th International Conference on Data Mining (ICDM).

[21]  Jiawei Han,et al.  A Particle-and-Density Based Evolutionary Clustering Method for Dynamic Networks , 2009, Proc. VLDB Endow..

[22]  Jimeng Sun,et al.  A Survey of Models and Algorithms for Social Influence Analysis , 2011, Social Network Data Analytics.

[23]  Christos Faloutsos,et al.  Graphs over time: densification laws, shrinking diameters and possible explanations , 2005, KDD '05.

[24]  Hisashi Kashima,et al.  Eigenspace-based anomaly detection in computer systems , 2004, KDD.

[25]  Yanxiang Huang,et al.  TencentRec: Real-time Stream Recommendation in Practice , 2015, SIGMOD Conference.

[26]  A. Bifet,et al.  A survey on concept drift adaptation , 2014, ACM Comput. Surv..

[27]  Cheikh Talibouya Diop,et al.  Contextual preference mining for user profile construction , 2015, Inf. Syst..

[28]  C. Faloutsos,et al.  EVENT DETECTION IN TIME SERIES OF MOBILE COMMUNICATION GRAPHS , 2010 .

[29]  Mathieu Bastian,et al.  Gephi: An Open Source Software for Exploring and Manipulating Networks , 2009, ICWSM.

[30]  Ambuj K. Singh,et al.  I act, therefore I judge: Network sentiment dynamics based on user activity change , 2013, 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013).

[31]  V. Latora,et al.  Complex networks: Structure and dynamics , 2006 .

[32]  Jaideep Srivastava,et al.  Measuring spontaneous devaluations in user preferences , 2013, KDD.

[33]  Michael I. Jordan,et al.  Latent Dirichlet Allocation , 2001, J. Mach. Learn. Res..

[34]  Kathleen M. Carley,et al.  Incremental closeness centrality for dynamically changing social networks , 2013, 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013).

[35]  Deepak Agarwal,et al.  fLDA: matrix factorization through latent dirichlet allocation , 2010, WSDM '10.

[36]  Ramana Rao Kompella,et al.  Network Sampling: From Static to Streaming Graphs , 2012, TKDD.

[37]  Andrew McCallum,et al.  Rethinking LDA: Why Priors Matter , 2009, NIPS.

[38]  Jure Leskovec,et al.  Modeling Information Diffusion in Implicit Networks , 2010, 2010 IEEE International Conference on Data Mining.

[39]  Le Wu,et al.  Modeling Users' Preferences and Social Links in Social Networking Services: A Joint-Evolving Perspective , 2016, AAAI.

[40]  Sunghee Choi,et al.  Efficient algorithms for updating betweenness centrality in fully dynamic graphs , 2016, Inf. Sci..

[41]  João Gama,et al.  On analyzing user preference dynamics with temporal social networks , 2018, Machine Learning.

[42]  U. Brandes A faster algorithm for betweenness centrality , 2001 .

[43]  Philip S. Yu,et al.  On Dynamic Link Inference in Heterogeneous Networks , 2012, SDM.

[44]  João Gama,et al.  Processing Evolving Social Networks for Change Detection Based on Centrality Measures , 2018, Studies in Big Data.

[45]  F. Harary,et al.  STRUCTURAL BALANCE: A GENERALIZATION OF HEIDER'S THEORY1 , 1977 .

[46]  H. Mouss,et al.  Test of Page-Hinckley, an approach for fault detection in an agro-alimentary production system , 2004, 2004 5th Asian Control Conference (IEEE Cat. No.04EX904).

[47]  Cécile Favre,et al.  Information diffusion in online social networks: a survey , 2013, SGMD.

[48]  Charu C. Aggarwal,et al.  Evolutionary Clustering and Analysis of Bibliographic Networks , 2011, 2011 International Conference on Advances in Social Networks Analysis and Mining.

[49]  Gregoris Mentzas,et al.  Exploring Customer Preferences with Probabilistic Topics Models , 2010 .

[50]  Ross J. Anderson,et al.  Temporal node centrality in complex networks. , 2012, Physical review. E, Statistical, nonlinear, and soft matter physics.

[51]  João Gama,et al.  On evaluating stream learning algorithms , 2012, Machine Learning.

[52]  Mohammad Ali Abbasi,et al.  Scalable learning of users' preferences using networked data , 2014, HT.

[53]  L. da F. Costa,et al.  Characterization of complex networks: A survey of measurements , 2005, cond-mat/0505185.

[54]  Jian Zhang,et al.  A Survey on Streaming Algorithms for Massive Graphs , 2010, Managing and Mining Graph Data.

[55]  Charu C. Aggarwal,et al.  Evolutionary Network Analysis , 2014, ACM Comput. Surv..

[56]  Panagiotis Takis Metaxas,et al.  What Do Retweets Indicate? Results from User Survey and Meta-Review of Research , 2015, ICWSM.

[57]  Muhammad Imran,et al.  Engineering Crowdsourced Stream Processing Systems , 2013, ArXiv.

[58]  Tanja Falkowski,et al.  Mining the Dynamics of Music Preferences from a Social Networking Site , 2009, 2009 International Conference on Advances in Social Network Analysis and Mining.

[59]  Daniel Jurafsky,et al.  Inferring User Preferences by Probabilistic Logical Reasoning over Social Networks , 2014, ArXiv.

[60]  Geoff Holmes,et al.  Mining frequent closed graphs on evolving data streams , 2011, KDD.

[61]  Danai Koutra,et al.  Graph based anomaly detection and description: a survey , 2014, Data Mining and Knowledge Discovery.

[62]  Cecilia Mascolo,et al.  Analysing information flows and key mediators through temporal centrality metrics , 2010, SNS '10.

[63]  Jun Zhang,et al.  Learning Temporal Dynamics of Behavior Propagation in Social Networks , 2014, AAAI.

[64]  João Gama,et al.  Real-time algorithm for changes detection in depth of anesthesia signals , 2013, Evol. Syst..

[65]  Badrish Chandramouli,et al.  StreamRec: a real-time recommender system , 2011, SIGMOD '11.

[66]  Albert-László Barabási,et al.  Statistical mechanics of complex networks , 2001, ArXiv.

[67]  Petter Holme,et al.  Analyzing Temporal Networks in Social Media , 2014, Proceedings of the IEEE.

[68]  Aristides Gionis,et al.  Event detection in activity networks , 2014, KDD.

[69]  João Gama,et al.  On Using Temporal Networks to Analyze User Preferences Dynamics , 2016, DS.

[70]  Nicola Santoro,et al.  Time-Varying Graphs and Social Network Analysis: Temporal Indicators and Metrics , 2011, ArXiv.

[71]  Komal Kapoor,et al.  Models of Dynamic User Preferences and their Applications to Recommendation and Retention , 2014 .

[72]  S. Hansson Changes in preference , 1995 .

[73]  Gabriele Eisenhauer,et al.  Preference Change Approaches From Philosophy Economics And Psychology , 2016 .

[74]  Argimiro Arratia,et al.  Forecasting with twitter data , 2013, ACM Trans. Intell. Syst. Technol..

[75]  Fabiola S. F. Pereira,et al.  Mining comparative sentences from social media text , 2015 .

[76]  Jingyu Zhou,et al.  Preference-Based Top-K Influential Nodes Mining in Social Networks , 2011, 2011IEEE 10th International Conference on Trust, Security and Privacy in Computing and Communications.

[77]  João Gama,et al.  Dynamic communities in evolving customer networks: an analysis using landmark and sliding windows , 2014, Social Network Analysis and Mining.

[78]  Ashish Goel,et al.  Fast Incremental and Personalized PageRank , 2010, Proc. VLDB Endow..

[79]  Jimeng Sun,et al.  Social action tracking via noise tolerant time-varying factor graphs , 2010, KDD.

[80]  Alexandros Nanopoulos,et al.  Modeling the dynamics of user preferences in coupled tensor factorization , 2014, RecSys '14.

[81]  Sandra de Amo,et al.  Strategies for Mining User Preferences in a Data Stream Setting , 2014, J. Inf. Data Manag..

[82]  M. Glanzer Stimulus satiation: an explanation of spontaneous alternation and related phenomena. , 1953, Psychological review.

[83]  Reza Zafarani,et al.  Social Media Mining: An Introduction , 2014 .

[84]  Ciro Cattuto,et al.  Time-varying social networks in a graph database: a Neo4j use case , 2013, GRADES.

[85]  Jimeng Sun,et al.  Temporal recommendation on graphs via long- and short-term preference fusion , 2010, KDD.

[86]  Alex Lascarides,et al.  Preference Change , 2015, J. Log. Lang. Inf..

[87]  Kathleen M. Carley,et al.  Measuring Temporal Patterns in Dynamic Social Networks , 2015, ACM Trans. Knowl. Discov. Data.

[88]  Christos Faloutsos,et al.  Graph Mining: Laws and Generators , 2010, Managing and Mining Graph Data.

[89]  João Gama,et al.  Fast Incremental Matrix Factorization for Recommendation with Positive-Only Feedback , 2014, UMAP.

[90]  Thorsten Joachims,et al.  Taste Over Time: The Temporal Dynamics of User Preferences , 2013, ISMIR.

[91]  Yi Lu,et al.  Path Problems in Temporal Graphs , 2014, Proc. VLDB Endow..

[92]  Donald Kossmann,et al.  The Skyline operator , 2001, Proceedings 17th International Conference on Data Engineering.

[93]  Hendrik Schreiber,et al.  Improving Genre Annotations for the Million Song Dataset , 2015, ISMIR.

[94]  Jesús S. Aguilar-Ruiz,et al.  Knowledge discovery from data streams , 2009, Intell. Data Anal..

[95]  William Eberle,et al.  Identifying Anomalies in Graph Streams Using Change Detection , 2016 .

[96]  Kathleen M. Carley,et al.  Incremental algorithm for updating betweenness centrality in dynamically growing networks , 2013, 2013 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining (ASONAM 2013).

[97]  Yehuda Koren,et al.  Collaborative filtering with temporal dynamics , 2009, KDD.

[98]  E. S. Page CONTINUOUS INSPECTION SCHEMES , 1954 .

[99]  Jari Saramäki,et al.  Path lengths, correlations, and centrality in temporal networks , 2011, Physical review. E, Statistical, nonlinear, and soft matter physics.

[100]  Amit Kumar,et al.  Connectivity and inference problems for temporal networks , 2000, Symposium on the Theory of Computing.

[101]  Ryan A. Rossi,et al.  Role-dynamics: fast mining of large dynamic networks , 2012, WWW.

[102]  Ido Guy,et al.  Social Recommender Systems , 2015, Recommender Systems Handbook.

[103]  Thierry Bertin-Mahieux,et al.  The Million Song Dataset , 2011, ISMIR.

[104]  João Gama,et al.  Evolving Centralities in Temporal Graphs: A Twitter Network Analysis , 2016, 2016 17th IEEE International Conference on Mobile Data Management (MDM).

[105]  Jimmy J. Lin,et al.  Burst Detection in Social Media Streams for Tracking Interest Profiles in Real Time , 2016, TREC.

[106]  Krishna P. Gummadi,et al.  On the evolution of user interaction in Facebook , 2009, WOSN '09.

[107]  Shou-De Lin,et al.  Modeling the Diffusion of Preferences on Social Networks , 2013, SDM.

[108]  Fenrong Liu,et al.  Reasoning about Preference Dynamics , 2011 .

[109]  Cecilia Mascolo,et al.  Temporal distance metrics for social network analysis , 2009, WOSN '09.