First-Passage Time Statistics on Surfaces of General Shape: Surface PDE Solvers using Generalized Moving Least Squares (GMLS)

W e develop numerical methods for computing statistics of stochastic processes on surfaces of general shape with drift-diffusion dynamics dXt = a(Xt)dt+b(Xt)dWt. We consider on a surface domain Ω the statistics u(x) = Ex [∫ τ 0 g(Xt)dt ] +Ex [f(Xτ )] with the exit stopping time τ = inft{t > 0 | Xt 6∈ Ω}. Using Dynkin’s formula, we compute statistics by developing high-order Generalized Moving Least Squares (GMLS) solvers for the associated surface PDE boundary-value problems. We focus particularly on the mean First Passage Times (FPTs) given by the special case f = 0, g = 1 with u(x) = Ex [τ ]. We perform studies for a variety of shapes showing our methods converge with high-order accuracy both in capturing the geometry and the surface PDE solutions. We then perform studies showing how FPTs are influenced by the surface geometry, drift dynamics, and spatially dependent diffusivities.

[1]  Bengt Fornberg,et al.  Stabilization of RBF-generated finite difference methods for convective PDEs , 2011, J. Comput. Phys..

[2]  G. Klein,et al.  Mean first-passage times of Brownian motion and related problems , 1952, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.

[3]  J. Monaghan,et al.  Smoothed particle hydrodynamics: Theory and application to non-spherical stars , 1977 .

[4]  Robert Michael Kirby,et al.  A Radial Basis Function (RBF)-Finite Difference (FD) Method for Diffusion and Reaction–Diffusion Equations on Surfaces , 2014, Journal of Scientific Computing.

[5]  Cécile Piret,et al.  The orthogonal gradients method: A radial basis functions method for solving partial differential equations on arbitrary surfaces , 2012, J. Comput. Phys..

[6]  Robert Tibshirani,et al.  The Elements of Statistical Learning: Data Mining, Inference, and Prediction , 2001, Springer Series in Statistics.

[7]  T. Faniran Numerical Solution of Stochastic Differential Equations , 2015 .

[8]  C. Storm,et al.  Impact of morphology on diffusive dynamics on curved surfaces. , 2014, Physical review. E, Statistical, nonlinear, and soft matter physics.

[9]  Gaurav S. Sukhatme,et al.  Solving Markov Decision Processes with Reachability Characterization from Mean First Passage Times , 2018, 2018 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[10]  Gerard T. Barkema,et al.  Monte Carlo Methods in Statistical Physics , 1999 .

[11]  Marino Arroyo,et al.  Approximation of tensor fields on surfaces of arbitrary topology based on local Monge parametrizations , 2019, J. Comput. Phys..

[12]  O. Gutiérrez,et al.  American option valuation using first-passage densities , 2013 .

[13]  Christel Hohenegger,et al.  Mean first passage time in a thermally fluctuating viscoelastic fluid , 2017 .

[14]  Joerg Kuhnert,et al.  A fully Lagrangian meshfree framework for PDEs on evolving surfaces , 2019, J. Comput. Phys..

[15]  R. Metzler,et al.  Strong defocusing of molecular reaction times results from an interplay of geometry and reaction control , 2018, Communications Chemistry.

[16]  Steven J. Ruuth,et al.  Simple computation of reaction–diffusion processes on point clouds , 2013, Proceedings of the National Academy of Sciences.

[17]  J. Bouchaud,et al.  Some applications of first-passage ideas to finance , 2013, 1306.3110.

[18]  R. Schaback,et al.  On generalized moving least squares and diffuse derivatives , 2012 .

[19]  P. Talkner,et al.  RATES AND MEAN FIRST PASSAGE TIMES , 1997 .

[20]  Ted Belytschko,et al.  Convergence and stabilization of stress‐point integration in mesh‐free and particle methods , 2008 .

[21]  Karl Pearson F.R.S. LIII. On lines and planes of closest fit to systems of points in space , 1901 .

[22]  Tamara G. Kolda,et al.  An overview of the Trilinos project , 2005, TOMS.

[23]  Erik Lehto,et al.  A guide to RBF-generated finite differences for nonlinear transport: Shallow water simulations on a sphere , 2012, J. Comput. Phys..

[24]  Paul J. Atzberger,et al.  Drift-Diffusion Dynamics and Phase Separation in Curved Cell Membranes and Dendritic Spines: Hybrid Discrete-Continuum Methods , 2021, ArXiv.

[25]  J. Hull Options, Futures, and Other Derivatives , 1989 .

[26]  Abhyudai Singh,et al.  First-passage time approach to controlling noise in the timing of intracellular events , 2017, Proceedings of the National Academy of Sciences.

[27]  M. Dehghan,et al.  Generalized moving least squares and moving kriging least squares approximations for solving the transport equation on the sphere , 2019, 1904.05831.

[28]  P. Atzberger,et al.  Hydrodynamic coupling of particle inclusions embedded in curved lipid bilayer membranes. , 2016, Soft matter.

[29]  Paul J. Atzberger,et al.  Spectral Numerical Exterior Calculus Methods for Differential Equations on Radial Manifolds , 2017, Journal of Scientific Computing.

[30]  Nathaniel Trask,et al.  Compatible meshfree discretization of surface PDEs , 2020, Computational Particle Mechanics.

[31]  Alan E. Lindsay,et al.  First Passage Statistics for the Capture of a Brownian Particle by a Structured Spherical Target with Multiple Surface Traps , 2017, Multiscale Model. Simul..

[32]  Edina Rosta,et al.  Mean first passage times in variational coarse graining using Markov state models. , 2019, The Journal of chemical physics.

[33]  Steven J. Ruuth,et al.  An RBF-FD closest point method for solving PDEs on surfaces , 2018, J. Comput. Phys..

[34]  Grady B. Wright,et al.  Mesh-free Semi-Lagrangian Methods for Transport on a Sphere Using Radial Basis Functions , 2018, J. Comput. Phys..

[35]  J. Stoyanov A Guide to First‐passage Processes , 2003 .

[36]  D. Beratan,et al.  Mean First-Passage Times in Biology. , 2016, Israel journal of chemistry.

[37]  B. J. Gross,et al.  Meshfree Methods on Manifolds for Hydrodynamic Flows on Curved Surfaces: A Generalized Moving Least-Squares (GMLS) Approach , 2019, J. Comput. Phys..

[38]  Steven J. Ruuth,et al.  A simple embedding method for solving partial differential equations on surfaces , 2008, J. Comput. Phys..

[39]  Russ Tedrake,et al.  Probabilistic Stability in Legged Systems : Metastability and the Mean First Passage Time ( MFPT ) Stability Margin , 2006 .

[40]  Mikio Nakahara,et al.  Hamilton Dynamics on Clifford Kaehler Manifolds , 2009, 0902.4076.

[41]  Junhong Xu,et al.  Reachable Space Characterization of Markov Decision Processes with Time Variability , 2019, Robotics: Science and Systems.

[42]  Ava J. Mauro,et al.  A First-Passage Kinetic Monte Carlo method for reaction-drift-diffusion processes , 2013, J. Comput. Phys..

[43]  E. Kansa Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates , 1990 .

[44]  L. Bachelier,et al.  Théorie de la spéculation , 1900 .

[45]  M. Magnasco,et al.  A phase transition in the first passage of a Brownian process through a fluctuating boundary with implications for neural coding , 2012, Proceedings of the National Academy of Sciences.

[46]  Andy R. Terrel,et al.  SymPy: Symbolic computing in Python , 2017, PeerJ Prepr..

[47]  E. Kansa MULTIQUADRICS--A SCATTERED DATA APPROXIMATION SCHEME WITH APPLICATIONS TO COMPUTATIONAL FLUID-DYNAMICS-- II SOLUTIONS TO PARABOLIC, HYPERBOLIC AND ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS , 1990 .

[48]  P. Lancaster,et al.  Surfaces generated by moving least squares methods , 1981 .

[49]  Leevan Ling,et al.  A Kernel-Based Embedding Method and Convergence Analysis for Surfaces PDEs , 2018, SIAM J. Sci. Comput..

[50]  Tom Chou,et al.  First Passage Problems in Biology , 2014, 1408.4518.

[51]  L. Reichl A modern course in statistical physics , 1980 .

[52]  C. Gardiner Handbook of Stochastic Methods , 1983 .

[53]  Per-Olof Persson,et al.  A Simple Mesh Generator in MATLAB , 2004, SIAM Rev..

[54]  R. Abraham,et al.  Manifolds, Tensor Analysis, and Applications , 1983 .

[55]  P. Krapivsky,et al.  First Passage in Conical Geometry and Ordering of Brownian Particles , 2013, 1306.2990.

[56]  A. Pressley Elementary Differential Geometry , 2000 .

[57]  O. Bénichou,et al.  Mean first-passage times in confined media: from Markovian to non-Markovian processes , 2015 .

[58]  Eric R. Ziegel,et al.  The Elements of Statistical Learning , 2003, Technometrics.

[59]  Heidi K. Thornquist,et al.  Amesos2 and Belos: Direct and iterative solvers for large sparse linear systems , 2012 .

[60]  Guillermo Sapiro,et al.  Fourth order partial differential equations on general geometries , 2006, J. Comput. Phys..

[61]  Martin D. Buhmann,et al.  Radial Basis Functions: Theory and Implementations: Preface , 2003 .

[62]  Robert Michael Kirby,et al.  RBF-LOI: Augmenting Radial Basis Functions (RBFs) with Least Orthogonal Interpolation (LOI) for Solving PDEs on Surfaces , 2018, J. Comput. Phys..

[63]  Paul J. Atzberger,et al.  Hydrodynamic flows on curved surfaces: Spectral numerical methods for radial manifold shapes , 2018, J. Comput. Phys..

[64]  Pierre Dupont,et al.  Learning Partially Observable Markov Models from First Passage Times , 2007, ECML.

[65]  Jian Liang,et al.  Solving Partial Differential Equations on Point Clouds , 2013, SIAM J. Sci. Comput..

[66]  Wing Kam Liu,et al.  Reproducing kernel particle methods , 1995 .

[67]  Katie Byl,et al.  First Passage Value , 2014, ArXiv.

[68]  Grady B. Wright,et al.  A High-Order Kernel Method for Diffusion and Reaction-Diffusion Equations on Surfaces , 2012, Journal of Scientific Computing.

[69]  M. Urner Scattered Data Approximation , 2016 .

[70]  M. Spivak A comprehensive introduction to differential geometry , 1979 .

[71]  Hongkai Zhao,et al.  A grid based particle method for solving partial differential equations on evolving surfaces and modeling high order geometrical motion , 2011, J. Comput. Phys..