Adaptive control for continuous-time systems preceded by hysteresis

In this paper, an implicit inversion of the hysteresis described by Prandtl-Ishlinskii model is introduced to avoid difficulties of the directly inverse construction for this kind of complex hysteresis models. Based on this inversion, the adaptive control for the output of the hysteresis is described by Prandtl-Ishlinskii model is discussed. Furthermore, the adaptive control for the continuous-time linear dynamical systems preceded with hysteresis described by Prandtl-Ishlinskii model is formulated. The stability of the controlled systems are analyzed and the output tracking errors can be controlled to be zero. Simulation results show the effectiveness of the proposed algorithms.

[1]  Harvey Thomas Banks,et al.  Hysteresis modeling in smart material systems , 1998 .

[2]  K. Kuhnen,et al.  Inverse control of systems with hysteresis and creep , 2001 .

[3]  Ying Zhang,et al.  Adaptive backstepping control of a class of uncertain nonlinear systems with unknown backlash-like hysteresis , 2004, IEEE Trans. Autom. Control..

[4]  John S. Baras,et al.  Modeling and control of a magnetostrictive actuator , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[5]  Subhash Rakheja,et al.  Adaptive variable structure control of a class of nonlinear systems with unknown Prandtl-Ishlinskii hysteresis , 2005, IEEE Transactions on Automatic Control.

[6]  Frank L. Lewis,et al.  Adaptive Control of Nonsmooth Dynamic Systems , 2001 .

[7]  Nils-Erik Wiberg,et al.  Adaptive design and analysis an integration of tools , 1998 .

[8]  Gang Tao,et al.  Adaptive control of plants with unknown hystereses , 1995 .

[9]  A. Visintin Differential models of hysteresis , 1994 .

[10]  John S. Baras,et al.  Modeling and control of hysteresis in magnetostrictive actuators , 2004, Autom..

[11]  McCall,et al.  Hysteresis, Discrete Memory, and Nonlinear Wave Propagation in Rock: A New Paradigm. , 1995, Physical review letters.

[12]  David W. L. Wang,et al.  Passivity-based stability and control of hysteresis in smart actuators , 2001, IEEE Trans. Control. Syst. Technol..

[13]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[14]  Ralph C. Smith Smart Material Systems , 2005 .

[15]  I. Mayergoyz,et al.  Preisach modeling of magnetostrictive hysteresis , 1991 .

[16]  H. Janocha,et al.  Adaptive inverse control of piezoelectric actuators with hysteresis operators , 1999, 1999 European Control Conference (ECC).

[17]  Karl Johan Åström,et al.  Adaptive Control , 1989, Embedded Digital Control with Microcontrollers.

[18]  M. Brokate,et al.  Hysteresis and Phase Transitions , 1996 .

[19]  R.V. Iyer,et al.  Hysteresis parameter identification with limited experimental data , 2004, IEEE Transactions on Magnetics.

[20]  Graham C. Goodwin,et al.  Guest editorial introduction to the special issue on dynamics and control of smart structures , 2001 .

[21]  D. Jiles,et al.  Theory of ferromagnetic hysteresis , 1986 .

[22]  Ralph C. Smith,et al.  Smart material systems - model development , 2005, Frontiers in applied mathematics.

[23]  Chun-Yi Su,et al.  Robust adaptive control of a class of nonlinear systems with unknown backlash-like hysteresis , 2000, IEEE Trans. Autom. Control..

[24]  Ciro Visone,et al.  Identification and compensation of Preisach hysteresis models for magnetostrictive actuators , 2001 .

[25]  Graham C. Goodwin,et al.  Adaptive filtering prediction and control , 1984 .

[26]  Mayergoyz,et al.  Mathematical models of hysteresis. , 1986, Physical review letters.

[27]  Toshio Fukuda,et al.  Adaptive Control for the Systems Preceded by Hysteresis , 2008, IEEE Transactions on Automatic Control.

[28]  A. M. Krasnosel'skii,et al.  A time-dependent Preisach model , 2001 .

[29]  D. Croft,et al.  Creep, Hysteresis, and Vibration Compensation for Piezoactuators: Atomic Force Microscopy Application , 2001 .

[30]  A. Kurdila,et al.  Hysteresis Modeling of SMA Actuators for Control Applications , 1998 .