Efficient Multi-Agent Exploration with Gaussian Processes

We present a robust and scalable algorithm to enable multiple robots to efficiently explore previously unknown environments. Applications of this algorithm include but are not limited to the exploration of scalar (e.g. concentration of a chemical substance) or vector fields (e.g. direction and intensity of the magnetic field). As opposed to previous works, our algorithm does not require prior knowledge about the shape or size of the environment. Also, its time complexity decreases from cubic to linear in respect to the environment's size. The algorithm employs a Gaussian process model to predict values at still unvisited locations and associates them an uncertainty. Based on a continuously updated map of these predicted values and uncertainties, each robot computes its next movement online by following the local gradient of uncertainty. We have experimentally validated our algorithm with densely measured data of an indoor magnetic field with significant spatial variations. We present a performance comparison of our algorithm with several trajectories. This comparison shows that the estimate computed by our algorithm approaches the true state of the environment faster than these other alternatives.

[1]  Noel A Cressie,et al.  Statistics for Spatial Data. , 1992 .

[2]  Robert Haining,et al.  Statistics for spatial data: by Noel Cressie, 1991, John Wiley & Sons, New York, 900 p., ISBN 0-471-84336-9, US $89.95 , 1993 .

[3]  Proceedings of the IEEE , 2018, IEEE Journal of Emerging and Selected Topics in Power Electronics.

[4]  M. Pollack Journal of Artificial Intelligence Research: Preface , 2001 .

[5]  Gaurav S. Sukhatme,et al.  Mobile Sensor Network Deployment using Potential Fields : A Distributed , Scalable Solution to the Area Coverage Problem , 2002 .

[6]  Petter Ögren,et al.  Cooperative control of mobile sensor networks:Adaptive gradient climbing in a distributed environment , 2004, IEEE Transactions on Automatic Control.

[7]  Gaurav S. Sukhatme,et al.  Constrained coverage for mobile sensor networks , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[8]  Christopher K. I. Williams,et al.  Gaussian Processes for Machine Learning (Adaptive Computation and Machine Learning) , 2005 .

[9]  Pradeep K. Khosla,et al.  Efficient mapping through exploitation of spatial dependencies , 2005, 2005 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[10]  Andreas Krause,et al.  Nonmyopic active learning of Gaussian processes: an exploration-exploitation approach , 2007, ICML '07.

[11]  Reza Olfati-Saber,et al.  Consensus and Cooperation in Networked Multi-Agent Systems , 2007, Proceedings of the IEEE.

[12]  Nicholas R. Jennings,et al.  A Decentralized, On-line Coordination Mechanism for Monitoring Spatial Phenomena with Mobile Sensors , 2008 .

[13]  Andreas Krause,et al.  Efficient Informative Sensing using Multiple Robots , 2014, J. Artif. Intell. Res..

[14]  Juha Röning,et al.  Near-optimal SLAM exploration in Gaussian processes , 2010, 2010 IEEE Conference on Multisensor Fusion and Integration.

[15]  Vijay Kumar,et al.  Online methods for radio signal mapping with mobile robots , 2010, 2010 IEEE International Conference on Robotics and Automation.

[16]  Carl E. Rasmussen,et al.  Gaussian Processes for Machine Learning (GPML) Toolbox , 2010, J. Mach. Learn. Res..

[17]  Patrick Robertson,et al.  Characterization of the indoor magnetic field for applications in Localization and Mapping , 2012, 2012 International Conference on Indoor Positioning and Indoor Navigation (IPIN).

[18]  Gaurav S. Sukhatme,et al.  Probabilistic spatial mapping and curve tracking in distributed multi-agent systems , 2012, 2012 IEEE International Conference on Robotics and Automation.