Variational point-obstacle avoidance on Riemannian manifolds

In this letter we study variational obstacle avoidance problems on complete Riemannian manifolds. The problem consists of minimizing an energy functional depending on the velocity, covariant acceleration and a repulsive potential function used to avoid a static obstacle on the manifold, among a set of admissible curves. We derive the dynamical equations for extrema of the variational problem, in particular on compact connected Lie groups and Riemannian symmetric spaces. Numerical examples are presented to illustrate the proposed method.

[1]  Peter E. Crouch,et al.  Elastic Curves as Solutions of Riemannian and Sub-Riemannian Control Problems , 2000, Math. Control. Signals Syst..

[2]  Oussama Khatib,et al.  Real-Time Obstacle Avoidance for Manipulators and Mobile Robots , 1986 .

[3]  B. O'neill Submersions and geodesics , 1967 .

[4]  Daniel E. Koditschek,et al.  Robot planning and control via potential functions , 1989 .

[5]  James Biggs,et al.  Geometric Attitude Motion Planning for Spacecraft with Pointing and Actuator Constraints , 2016 .

[6]  D. Koditschek,et al.  Robot navigation functions on manifolds with boundary , 1990 .

[7]  Peter E. Crouch,et al.  Dynamic interpolation and application to flight control , 1991 .

[8]  M. Camarinha,et al.  A general framework for quantum splines , 2018, International Journal of Geometric Methods in Modern Physics.

[9]  A. Bloch,et al.  Dynamic Coverage Optimal Control for Multiple Spacecraft Interferometric Imaging , 2007 .

[10]  L. Colombo Geometric and numerical methods for optimal control of mechanical systems , 2014 .

[11]  Leonardo Colombo,et al.  Dynamic interpolation for obstacle avoidance on Riemannian manifolds , 2018, Int. J. Control.

[12]  P. Crouch,et al.  The dynamic interpolation problem: On Riemannian manifolds, Lie groups, and symmetric spaces , 1995 .

[13]  Jacob R. Goodman Local minimizers for variational obstacle avoidance on Riemannian manifolds , 2022, Journal of Geometric Mechanics.

[14]  K. Nomizu Invariant Affine Connections on Homogeneous Spaces , 1954 .

[15]  Leonardo Colombo,et al.  Geometric Integrators for Higher-Order Variational Systems and Their Application to Optimal Control , 2014, J. Nonlinear Sci..

[16]  Leonardo Colombo,et al.  Variational collision avoidance problems on Riemannian manifolds , 2018, 2018 IEEE Conference on Decision and Control (CDC).

[17]  Jesse Freeman,et al.  in Morse theory, , 1999 .

[18]  Erchuan Zhang,et al.  Left Lie reduction for curves in homogeneous spaces , 2018, Adv. Comput. Math..

[19]  William Holderbaum,et al.  Planning rigid body motions using elastic curves , 2008, Math. Control. Signals Syst..

[20]  Erchuan Zhang,et al.  Optimal interpolants on Grassmann manifolds , 2019, Math. Control. Signals Syst..

[21]  Danna Zhou,et al.  d. , 1840, Microbial pathogenesis.

[22]  K. Spindler Optimal control on Lie groups with applications to attitude control , 1998, Math. Control. Signals Syst..

[23]  A. D. Lewis,et al.  Geometric Control of Mechanical Systems , 2004, IEEE Transactions on Automatic Control.

[24]  K. Spindler,et al.  Attitude Maneuvers Which Avoid a Forbidden Direction , 2002 .

[25]  R. Giambò,et al.  An analytical theory for Riemannian cubic polynomials , 2002 .

[26]  L. Noakes,et al.  Relative geodesics in bi-invariant Lie groups , 2017, Proceedings of the Royal Society A.

[27]  Tomasz Popiel,et al.  Higher order geodesics in Lie groups , 2007, Math. Control. Signals Syst..

[28]  S. Helgason Differential Geometry, Lie Groups, and Symmetric Spaces , 1978 .

[29]  P. Thomas Fletcher,et al.  Intrinsic Polynomials for Regression on Riemannian Manifolds , 2014, Journal of Mathematical Imaging and Vision.

[30]  W. Boothby An introduction to differentiable manifolds and Riemannian geometry , 1975 .

[31]  Fabio Giannoni,et al.  Optimal Control on Riemannian Manifolds by Interpolation , 2004, Math. Control. Signals Syst..

[32]  Lyle Noakes,et al.  Cubic Splines on Curved Spaces , 1989 .

[33]  H. Karcher Riemannian center of mass and mollifier smoothing , 1977 .

[34]  Leonardo Colombo,et al.  Higher-order variational problems on lie groups and optimal control applications , 2014 .

[35]  Peter E. Crouch,et al.  On the equivalence of higher order variational problems and optimal control problems , 1996, Proceedings of 35th IEEE Conference on Decision and Control.

[36]  Michael E. Taylor,et al.  Differential Geometry I , 1994 .