Indirect measurements: combining parameter selection with ridge regression
暂无分享,去创建一个
[1] A. N. Tikhonov,et al. Solutions of ill-posed problems , 1977 .
[2] C. W. Groetsch,et al. The theory of Tikhonov regularization for Fredholm equations of the first kind , 1984 .
[3] G. C. McDonald,et al. A Monte Carlo Evaluation of Some Ridge-Type Estimators , 1975 .
[4] A. E. Hoerl,et al. Ridge Regression: Applications to Nonorthogonal Problems , 1970 .
[5] David J. C. MacKay,et al. Bayesian Interpolation , 1992, Neural Computation.
[6] John Skilling,et al. Data analysis : a Bayesian tutorial , 1996 .
[7] Tor Arne Johansen,et al. Identification of non-linear systems using empirical data and prior knowledge - an optimization approach , 1996, Autom..
[8] Donald W. Marquaridt. Generalized Inverses, Ridge Regression, Biased Linear Estimation, and Nonlinear Estimation , 1970 .
[9] A. E. Hoerl,et al. Ridge regression:some simulations , 1975 .
[10] David M. Allen,et al. The Relationship Between Variable Selection and Data Agumentation and a Method for Prediction , 1974 .
[11] Graham C. Goodwin,et al. Estimation of model quality , 1994, Autom..
[12] Keith A. Woodbury,et al. Inverse problems and parameter estimation: integration of measurements and analysis , 1998 .
[13] Lennart Ljung,et al. Nonlinear black-box modeling in system identification: a unified overview , 1995, Autom..
[14] R. Farebrother. The Minimum Mean Square Error Linear Estimator and Ridge Regression , 1975 .
[15] Diego A. Murio,et al. The Mollification Method and the Numerical Solution of Ill-Posed Problems , 1993 .
[16] Aleksey V. Nenarokomov,et al. Uncertainties in parameter estimation: the inverse problem , 1995 .
[17] R. R. Hocking. The analysis and selection of variables in linear regression , 1976 .
[18] William H. Press,et al. Numerical recipes in C (2nd ed.): the art of scientific computing , 1992 .
[19] Tor Arne Johansen,et al. On Tikhonov regularization, bias and variance in nonlinear system identification , 1997, Autom..
[20] S. Wold,et al. The Collinearity Problem in Linear Regression. The Partial Least Squares (PLS) Approach to Generalized Inverses , 1984 .
[21] George E. P. Box,et al. Empirical Model‐Building and Response Surfaces , 1988 .
[22] A. G. Polak,et al. A forward model for maximum expiration , 1998, Comput. Biol. Medicine.
[23] Roman Z. Morawski,et al. Deconvolution algorithms for instrumental applications: A comparative study , 1995 .
[24] L. Joseph,et al. Bayesian Statistics: An Introduction , 1989 .
[25] A. Emery,et al. Optimal experiment design , 1998 .
[26] Eric Walter,et al. Qualitative and quantitative experiment design for phenomenological models - A survey , 1990, Autom..
[27] I. Helland. Partial least squares regression and statistical models , 1990 .
[28] A. G. Polak,et al. A metrological model for maximum expiration , 1998 .
[29] Raman K. Mehra,et al. Optimal input signals for parameter estimation in dynamic systems--Survey and new results , 1974 .
[30] C. Cobelli,et al. Sensitivity analysis in parameter estimation of physiological systems , 1996, Proceedings of 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.