Color Invariant Representation and Applications

Illumination factors such as shading, shadow, and highlight observed from object surfaces affect the appearance and analysis of natural color images. Invariant representations to these factors were presented in several ways. Most of these methods used the standard dichromatic reflection model that assumed inhomogeneous dielectric material. The standard model cannot describe metallic objects. This chapter introduces an illumination-invariant representation that is derived from the standard dichromatic reflection model for inhomogeneous dielectric and the extended dichromatic reflection model for homogeneous metal. The illumination color is estimated from two inhomogeneous surfaces to recover the surface reflectance of object without using a reference white standard. The overall performance of the invariant representation is examined in experiments using real-world objects including metals and dielectrics in detail. The feasibility of the representation for effective edge detection is introduced and compared with the state-of-the-art illumination-invariant methods.

[1]  Glenn Healey,et al.  The Illumination-Invariant Recognition of 3D Objects Using Local Color Invariants , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Koen E. A. van de Sande,et al.  Evaluating Color Descriptors for Object and Scene Recognition , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[3]  Takahiko Horiuchi,et al.  Spectral imaging method for material classification and inspection of printed circuit boards , 2010 .

[4]  Takahiko Horiuchi,et al.  An Effective Method for Illumination-Invariant Representation of Color Images , 2012, ECCV Workshops.

[5]  Shoji Tominaga,et al.  MULTICHANNEL VISION SYSTEM FOR ESTIMATING SURFACE AND ILLUMINATION FUNCTIONS , 1996 .

[6]  Touradj Ebrahimi,et al.  Cast shadow segmentation using invariant color features , 2004, Comput. Vis. Image Underst..

[7]  Shoji Tominaga,et al.  Dichromatic reflection models for a variety of materials , 1994 .

[8]  Takahiko Horiuchi,et al.  Invariant representation for spectral reflectance images and its application , 2011, EURASIP J. Image Video Process..

[9]  Takahiko Horiuchi,et al.  Illumination-invariant representation for natural color images and its application , 2012, 2012 IEEE Southwest Symposium on Image Analysis and Interpretation.

[10]  Joost van de Weijer,et al.  Robust photometric invariant features from the color tensor , 2006, IEEE Transactions on Image Processing.

[11]  Darius Burschka,et al.  Illumination-invariant image-based novelty detection in a cognitive mobile robot's environment , 2010, 2010 IEEE International Conference on Robotics and Automation.

[12]  Takahiko Horiuchi,et al.  Material Classification for Printed Circuit Boards by Spectral Imaging System , 2009, CCIW.

[13]  Theo Gevers,et al.  Classifying color transitions into shadow-geometry, illumination, highlight or material edges , 2000, Proceedings 2000 International Conference on Image Processing (Cat. No.00CH37101).

[14]  Darius Burschka,et al.  Illumination-invariant Image-based Environment Representations for Cognitive Mobile Robots Using Intrinsic Images , 2009, VMV.

[15]  M. Abidi,et al.  Detection and classification of edges in color images , 2005, IEEE Signal Processing Magazine.

[16]  N. Otsu A threshold selection method from gray level histograms , 1979 .

[17]  Jun Peng,et al.  Image Retrieval based on HSV Feature and Regional Shannon Entropy , 2012, Int. J. Softw. Sci. Comput. Intell..

[18]  Alain Trémeau,et al.  Color in Image and Video Processing: Most Recent Trends and Future Research Directions , 2008, EURASIP J. Image Video Process..

[19]  Theo Gevers,et al.  Color feature detection and classification by learning , 2005, IEEE International Conference on Image Processing 2005.

[20]  S. Tominaga Dichromatic reflection models for ren dering object surfaces , 1996 .

[21]  Theo Gevers,et al.  Adaptive Image Segmentation by Combining Photometric Invariant Region and Edge Information , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[22]  Jae Byung Park Efficient color representation for image segmentation under nonwhite illumination , 2003, SPIE Optics East.

[23]  Steven A. Shafer,et al.  Using color to separate reflection components , 1985 .

[24]  J. Parkkinen,et al.  Characteristic spectra of Munsell colors , 1989 .

[25]  Joost van de Weijer,et al.  Edge and corner detection by photometric quasi-invariants , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Gerald Schaefer,et al.  Ear Recognition Using Block-Based Principal Component Analysis and Decision Fusion , 2015, PReMI.

[27]  S. Tominaga,et al.  Polarization imaging for material classification , 2008 .

[28]  Theo Gevers,et al.  Selection and Fusion of Color Models for Image Feature Detection , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Theo Gevers,et al.  Classifying color edges in video into shadow-geometry, highlight, or material transitions , 2003, IEEE Trans. Multim..

[30]  Graham D. Finlayson,et al.  Color in Perspective , 1996, IEEE Trans. Pattern Anal. Mach. Intell..

[31]  Arnold W. M. Smeulders,et al.  Color-based object recognition , 1997, Pattern Recognit..

[32]  Aboul Ella Hassanien,et al.  Spectral Reflectance Images and Applications , 2016 .

[33]  David J. Kriegman,et al.  Beyond Lambert: reconstructing specular surfaces using color , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[34]  Arnold W. M. Smeulders,et al.  Color Invariance , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[35]  David J. Kriegman,et al.  Color Subspaces as Photometric Invariants , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[36]  H. A. Ali,et al.  Multimodal biometric authentication algorithm using ear and finger knuckle images , 2012, 2012 Seventh International Conference on Computer Engineering & Systems (ICCES).

[37]  Bo Zhang,et al.  Sparse Based Image Classification With Bag-of-Visual-Words Representations , 2011, Int. J. Softw. Sci. Comput. Intell..

[38]  Václav Snásel,et al.  Human Thermal Face Recognition Based on Random Linear Oracle (RLO) Ensembles , 2015, 2015 International Conference on Intelligent Networking and Collaborative Systems.

[39]  Arnold W. M. Smeulders,et al.  PicToSeek: combining color and shape invariant features for image retrieval , 2000, IEEE Trans. Image Process..

[40]  Václav Snásel,et al.  Detection of breast abnormalities of thermograms based on a new segmentation method , 2015, 2015 Federated Conference on Computer Science and Information Systems (FedCSIS).

[41]  Katsushi Ikeuchi,et al.  Separating Reflection Components of Textured Surfaces Using a Single Image , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[42]  Arnold W. M. Smeulders,et al.  Measurement of color invariants , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[43]  Joost van de Weijer,et al.  Robust optical flow from photometric invariants , 2004, 2004 International Conference on Image Processing, 2004. ICIP '04..

[44]  María Teresa Lamata,et al.  Exploring Innovative and Successful Applications of Soft Computing , 2013 .

[45]  Arnold W. M. Smeulders,et al.  Invariant representation in image processing , 2001, Proceedings 2001 International Conference on Image Processing (Cat. No.01CH37205).

[46]  Aboul Ella Hassanien,et al.  Two biometric approaches for cattle identification based on features and classifiers fusion , 2015 .

[47]  Shree K. Nayar,et al.  A class of photometric invariants: separating material from shape and illumination , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[48]  Václav Snásel,et al.  Biometric cattle identification approach based on Weber's Local Descriptor and AdaBoost classifier , 2016, Comput. Electron. Agric..

[49]  Hsien-Che Lee,et al.  Modeling Light Reflection for Computer Color Vision , 1990, IEEE Trans. Pattern Anal. Mach. Intell..

[50]  T. Gevers,et al.  UvA-DARE ( Digital Academic Repository ) Robust Histogram Construction from Color Invariants for Object Recognition , 2003 .

[51]  Smaine Mazouzi,et al.  Penguin Search Optimisation Algorithm for Finding Optimal Spaced Seeds , 2015, Int. J. Softw. Sci. Comput. Intell..

[52]  Shoji Tominaga Spectral imaging by a multichannel camera , 1999, J. Electronic Imaging.