Functionally defined white matter of the macaque monkey brain reveals a dorso-ventral attention network

Classical studies of attention have identified areas of parietal and frontal cortex as sources of attentional control. Recently, a ventral region in the macaque temporal cortex, the posterior infero-temporal dorsal area PITd, has been suggested as a third attentional control area. This raises the question of whether and how spatially distant areas coordinate a joint focus of attention. Here we tested the hypothesis that parieto-frontal attention areas and PITd are directly interconnected. By combining functional MRI with ex-vivo high-resolution diffusion MRI, we found that PITd and dorsal attention areas are all directly connected through three specific fascicles. These results ascribe a new function, the communication of attention signals, to two known fiber-bundles, highlight the importance of vertical interactions across the two visual streams, and imply that the control of endogenous attention, hitherto thought to reside in macaque dorsal cortical areas, is exerted by a dorso-ventral network.

[1]  A. Treisman,et al.  A feature-integration theory of attention , 1980, Cognitive Psychology.

[2]  H. Barbas,et al.  Organization of afferent input to subdivisions of area 8 in the rhesus monkey , 1981, The Journal of comparative neurology.

[3]  Charles M. Butter,et al.  Impairments in orienting to visual stimuli in monkeys following unilateral lesions of the superior sulcal polysensory cortex , 1986, Neuropsychologia.

[4]  D. Pandya,et al.  Association fiber pathways to the frontal cortex from the superior temporal region in the rhesus monkey , 1988, The Journal of comparative neurology.

[5]  H. Barbas Anatomic organization of basoventral and mediodorsal visual recipient prefrontal regions in the rhesus monkey , 1988, The Journal of comparative neurology.

[6]  R. Andersen,et al.  Visual receptive field organization and cortico‐cortical connections of the lateral intraparietal area (area LIP) in the macaque , 1990, The Journal of comparative neurology.

[7]  D. J. Felleman,et al.  Distributed hierarchical processing in the primate cerebral cortex. , 1991, Cerebral cortex.

[8]  Jeffrey D. Schall,et al.  Neural basis of saccade target selection in frontal eye field during visual search , 1993, Nature.

[9]  C. Lewis,et al.  Is It Reproducible , 1993 .

[10]  Leslie G. Ungerleider,et al.  Cortical connections of inferior temporal area TEO in macaque monkeys , 1993, The Journal of comparative neurology.

[11]  K. Heilman,et al.  Posterior neocortical systems subserving awareness and neglect. Neglect associated with superior temporal sulcus but not area 7 lesions. , 1994, Archives of neurology.

[12]  T D Albright,et al.  Effects of superior temporal polysensory area lesions on eye movements in the macaque monkey. , 1995, Journal of neurophysiology.

[13]  M. Goodale,et al.  The visual brain in action , 1995 .

[14]  J. Bullier,et al.  Topography of visual cortex connections with frontal eye field in macaque: convergence and segregation of processing streams , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[15]  J. Bullier,et al.  Functional streams in occipito-frontal connections in the monkey , 1996, Behavioural Brain Research.

[16]  M. Goldberg,et al.  The representation of visual salience in monkey parietal cortex , 1998, Nature.

[17]  Kazuo Hikosaka,et al.  Representation of foveal visual fields in the ventral bank of the superior temporal sulcus in the posterior inferotemporal cortex of the macaque monkey , 1998, Behavioural Brain Research.

[18]  S Pajevic,et al.  Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: Application to white matter fiber tract mapping in the human brain , 1999, Magnetic resonance in medicine.

[19]  P. Basser,et al.  Statistical artifacts in diffusion tensor MRI (DT‐MRI) caused by background noise , 2000, Magnetic resonance in medicine.

[20]  Leslie G. Ungerleider,et al.  Mechanisms of visual attention in the human cortex. , 2000, Annual review of neuroscience.

[21]  Sinisa Pajevic,et al.  Color schemes to represent the orientation of anisotropic tissues from diffusion tensor data: Application to white matter fiber tract mapping in the human brain , 1999, Magnetic resonance in medicine.

[22]  D. V. van Essen,et al.  Corticocortical connections of visual, sensorimotor, and multimodal processing areas in the parietal lobe of the macaque monkey , 2000, The Journal of comparative neurology.

[23]  Gordon C. Baylis,et al.  Visual extinction and awareness: The importance of binding dorsal and ventral pathways , 2001 .

[24]  M. Young,et al.  Advanced database methodology for the Collation of Connectivity data on the Macaque brain (CoCoMac). , 2001, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[25]  H. Karnath New insights into the functions of the superior temporal cortex , 2001, Nature Reviews Neuroscience.

[26]  M. Corbetta,et al.  Control of goal-directed and stimulus-driven attention in the brain , 2002, Nature Reviews Neuroscience.

[27]  Leonidas J. Guibas,et al.  The Earth Mover's Distance as a Metric for Image Retrieval , 2000, International Journal of Computer Vision.

[28]  Osamu Abe,et al.  The optimal trackability threshold of fractional anisotropy for diffusion tensor tractography of the corticospinal tract. , 2004, Magnetic resonance in medical sciences : MRMS : an official journal of Japan Society of Magnetic Resonance in Medicine.

[29]  Timothy Edward John Behrens,et al.  Quantitative Investigation of Connections of the Prefrontal Cortex in the Human and Macaque using Probabilistic Diffusion Tractography , 2005, The Journal of Neuroscience.

[30]  John K. Tsotsos,et al.  Neurobiology of Attention , 2005 .

[31]  N. P. Bichot,et al.  A visual salience map in the primate frontal eye field. , 2005, Progress in brain research.

[32]  Guido Gerig,et al.  User-guided 3D active contour segmentation of anatomical structures: Significantly improved efficiency and reliability , 2006, NeuroImage.

[33]  Doris Y. Tsao,et al.  A Cortical Region Consisting Entirely of Face-Selective Cells , 2006, Science.

[34]  Jillian H. Fecteau,et al.  Salience, relevance, and firing: a priority map for target selection , 2006, Trends in Cognitive Sciences.

[35]  D. Pandya,et al.  Fiber Pathways of the Brain , 2006 .

[36]  M. Petrides,et al.  Efferent association pathways originating in the caudal prefrontal cortex in the macaque monkey , 2006, The Journal of comparative neurology.

[37]  Alex J. de Crespigny,et al.  An approach to high resolution diffusion tensor imaging in fixed primate brain , 2007, NeuroImage.

[38]  Alan Connelly,et al.  Robust determination of the fibre orientation distribution in diffusion MRI: Non-negativity constrained super-resolved spherical deconvolution , 2007, NeuroImage.

[39]  J Sijbers,et al.  Influence of User-Defined Parameters on Diffusion Tensor Tractography of the Corticospinal Tract , 2007, The neuroradiology journal.

[40]  D. Pandya,et al.  Association fibre pathways of the brain: parallel observations from diffusion spectrum imaging and autoradiography. , 2007, Brain : a journal of neurology.

[41]  N. Logothetis,et al.  A combined MRI and histology atlas of the rhesus monkey brain in stereotaxic coordinates , 2007 .

[42]  Jacob Jelsing,et al.  Validation of in vitro probabilistic tractography , 2007, NeuroImage.

[43]  Rolf Kötter,et al.  Online retrieval, processing, and visualization of primate connectivity data from the CoCoMac Database , 2007, Neuroinformatics.

[44]  O. Sporns,et al.  Dynamical consequences of lesions in cortical networks , 2008, Human brain mapping.

[45]  Alex A. Pollen,et al.  Beyond Neuroanatomy: Novel Approaches to Studying Brain Evolution , 2008, Brain, Behavior and Evolution.

[46]  Rainer Goebel,et al.  High-resolution diffusion tensor imaging and tractography of the human optic chiasm at 9.4 T , 2008, NeuroImage.

[47]  M. Catani,et al.  A diffusion tensor imaging tractography atlas for virtual in vivo dissections , 2008, Cortex.

[48]  Jeremy D. Schmahmann,et al.  Diffusion spectrum magnetic resonance imaging (DSI) tractography of crossing fibers , 2008, NeuroImage.

[49]  Doris Y. Tsao,et al.  Patches with Links: A Unified System for Processing Faces in the Macaque Temporal Lobe , 2008, Science.

[50]  R. Fields,et al.  White matter in learning, cognition and psychiatric disorders , 2008, Trends in Neurosciences.

[51]  M. Corbetta,et al.  The Reorienting System of the Human Brain: From Environment to Theory of Mind , 2008, Neuron.

[52]  K. Kiuchi,et al.  Fractional Anisotropy–Threshold Dependence in Tract-Based Diffusion Tensor Analysis: Evaluation of the Uncinate Fasciculus in Alzheimer Disease , 2009, American Journal of Neuroradiology.

[53]  Bevil R. Conway,et al.  Color-tuned neurons are spatially clustered according to color preference within alert macaque posterior inferior temporal cortex , 2009, Proceedings of the National Academy of Sciences.

[54]  M. Goldberg,et al.  Attention, intention, and priority in the parietal lobe. , 2010, Annual review of neuroscience.

[55]  G. Orban,et al.  The Retinotopic Organization of the Human Middle Temporal Area MT/V5 and Its Cortical Neighbors , 2010, The Journal of Neuroscience.

[56]  R. Andersen,et al.  Space representation for eye movements is more contralateral in monkeys than in humans , 2010, Proceedings of the National Academy of Sciences.

[57]  Derek K. Jones,et al.  Precision and Accuracy in Diffusion Tensor Magnetic Resonance Imaging , 2010, Topics in magnetic resonance imaging : TMRI.

[58]  C. Weiller,et al.  Structural connectivity for visuospatial attention: significance of ventral pathways. , 2010, Cerebral cortex.

[59]  M. Carrasco Visual attention: The past 25 years , 2011, Vision Research.

[60]  Arno Klein,et al.  A reproducible evaluation of ANTs similarity metric performance in brain image registration , 2011, NeuroImage.

[61]  G. Orban,et al.  Action Observation Circuits in the Macaque Monkey Cortex , 2011, The Journal of Neuroscience.

[62]  P. Thompson,et al.  Diffusion imaging, white matter, and psychopathology. , 2011, Annual review of clinical psychology.

[63]  Leonardo Chelazzi,et al.  Neural basis of visual selective attention. , 2011, Wiley interdisciplinary reviews. Cognitive science.

[64]  M. Catani,et al.  A lateralized brain network for visuospatial attention , 2011, Nature Neuroscience.

[65]  R. Andersen,et al.  Functional imaging reveals rapid reorganization of cortical activity after parietal inactivation in monkeys , 2012, Proceedings of the National Academy of Sciences.

[66]  Xiaoping P. Hu,et al.  Diffusion tensor imaging reveals evolution of primate brain architectures , 2013, Brain Structure and Function.

[67]  Mark W. Woolrich,et al.  FSL , 2012, NeuroImage.

[68]  Nadim Joni Shah,et al.  Human cortical connectome reconstruction from diffusion weighted MRI: The effect of tractography algorithm , 2012, NeuroImage.

[69]  M. Catani,et al.  Monkey to human comparative anatomy of the frontal lobe association tracts , 2012, Cortex.

[70]  Alan Connelly,et al.  MRtrix: Diffusion tractography in crossing fiber regions , 2012, Int. J. Imaging Syst. Technol..

[71]  B. Wandell,et al.  Tract Profiles of White Matter Properties: Automating Fiber-Tract Quantification , 2012, PloS one.

[72]  Rogier B Mars,et al.  Connectivity profiles reveal the relationship between brain areas for social cognition in human and monkey temporoparietal cortex , 2013, Proceedings of the National Academy of Sciences.

[73]  S. Huettel,et al.  A nexus model of the temporal–parietal junction , 2013, Trends in Cognitive Sciences.

[74]  Angela D Friederici,et al.  The language network , 2012, Current Opinion in Neurobiology.

[75]  Joy J. Geng,et al.  Neuroscience and Biobehavioral Reviews Review Re-evaluating the Role of Tpj in Attentional Control: Contextual Updating? , 2022 .

[76]  Brian A. Wandell,et al.  Anatomy of the visual word form area: Adjacent cortical circuits and long-range white matter connections , 2013, Brain and Language.

[77]  Lauren L. Cloutman,et al.  Interaction between dorsal and ventral processing streams: Where, when and how? , 2013, Brain and Language.

[78]  Dwight J. Kravitz,et al.  The ventral visual pathway: an expanded neural framework for the processing of object quality , 2013, Trends in Cognitive Sciences.

[79]  F. Pestilli,et al.  Evaluation and statistical inference for living connectomes , 2014, Nature Methods.

[80]  P. Thier,et al.  Disparate substrates for head gaze following and face perception in the monkey superior temporal sulcus , 2014, eLife.

[81]  D. Leopold,et al.  Anatomical accuracy of brain connections derived from diffusion MRI tractography is inherently limited , 2014, Proceedings of the National Academy of Sciences.

[82]  I. Koerte,et al.  Diffusion Tensor Imaging , 2014 .

[83]  Martin Lotze,et al.  Comparison of Parameter Threshold Combinations for Diffusion Tensor Tractography in Chronic Stroke Patients and Healthy Subjects , 2014, PloS one.

[84]  Stanislas Dehaene,et al.  Learning to read improves the structure of the arcuate fasciculus. , 2014, Cerebral cortex.

[85]  Valentina Bambini,et al.  A model for Social Communication And Language Evolution and Development (SCALED) , 2014, Current Opinion in Neurobiology.

[86]  A. Pendyal Learning to Read , 2014, Journal of General Internal Medicine.

[87]  B. Wandell,et al.  The vertical occipital fasciculus: A century of controversy resolved by in vivo measurements , 2014, Proceedings of the National Academy of Sciences.

[88]  Maxime Descoteaux,et al.  Real-time multi-peak tractography for instantaneous connectivity display , 2014, Front. Neuroinform..

[89]  Anders Petersen,et al.  Structural Variability within Frontoparietal Networks and Individual Differences in Attentional Functions: An Approach Using the Theory of Visual Attention , 2015, The Journal of Neuroscience.

[90]  M. Davare,et al.  Interactions between dorsal and ventral streams for controlling skilled grasp , 2015, Neuropsychologia.

[91]  S. Petersen,et al.  Brain Networks and Cognitive Architectures , 2015, Neuron.

[92]  Peter Janssen,et al.  Shape representations in the primate dorsal visual stream , 2015, Front. Comput. Neurosci..

[93]  Stefan Everling,et al.  Face Patch Resting State Networks Link Face Processing to Social Cognition , 2015, PLoS biology.

[94]  Timothy E. J. Behrens,et al.  Measuring macroscopic brain connections in vivo , 2015, Nature Neuroscience.

[95]  M. Corbetta,et al.  Functional evolution of new and expanded attention networks in humans , 2015, Proceedings of the National Academy of Sciences.

[96]  W. Vanduffel,et al.  Covert Shifts of Spatial Attention in the Macaque Monkey , 2015, The Journal of Neuroscience.

[97]  Karla L. Miller,et al.  The extreme capsule fiber complex in humans and macaque monkeys: a comparative diffusion MRI tractography study , 2015, Brain Structure and Function.

[98]  David K. Yu,et al.  Superficial white matter fiber systems impede detection of long-range cortical connections in diffusion MR tractography , 2015, Proceedings of the National Academy of Sciences.

[99]  Doris Y. Tsao,et al.  Anatomical Connections of the Functionally Defined “Face Patches” in the Macaque Monkey , 2016, Neuron.

[100]  Jesper Andersson,et al.  A multi-modal parcellation of human cerebral cortex , 2016, Nature.

[101]  Jonathan Winawer,et al.  A Major Human White Matter Pathway Between Dorsal and Ventral Visual Cortex. , 2016, Cerebral cortex.

[102]  Brian A. Wandell,et al.  Ensemble Tractography , 2016, PLoS Comput. Biol..

[103]  B. Wandell Clarifying Human White Matter. , 2016, Annual review of neuroscience.

[104]  Heiko Stemmann,et al.  Attentive Motion Discrimination Recruits an Area in Inferotemporal Cortex , 2016, The Journal of Neuroscience.

[105]  J. Sliwa,et al.  A dedicated network for social interaction processing in the primate brain , 2017, Science.

[106]  Declan G. M. Murphy,et al.  Functional segregation and integration within fronto-parietal networks , 2017, NeuroImage.

[107]  Peter F. Neher,et al.  The challenge of mapping the human connectome based on diffusion tractography , 2017, Nature Communications.

[108]  Brian A. Wandell,et al.  The visual white matter: The application of diffusion MRI and fiber tractography to vision science , 2016, bioRxiv.

[109]  P. Bartolomeo,et al.  Attention and spatial cognition: Neural and anatomical substrates of visual neglect. , 2017, Annals of physical and rehabilitation medicine.

[110]  A. Milner,et al.  How do the two visual streams interact with each other? , 2017, Experimental Brain Research.

[111]  Franco Pestilli,et al.  Multidimensional encoding of brain connectomes , 2017, Scientific Reports.

[112]  Kendrick N Kay,et al.  Bottom-up and top-down computations in word- and face-selective cortex , 2017, eLife.

[113]  Franco Pestilli,et al.  Occipital white matter tracts in human and macaque , 2016, bioRxiv.

[114]  Maurizio Corbetta,et al.  Differential white matter involvement associated with distinct visuospatial deficits after right hemisphere stroke , 2017, Cortex.

[115]  Brian A. Wandell,et al.  The posterior arcuate fasciculus and the vertical occipital fasciculus , 2017, Cortex.

[116]  P. Bartolomeo,et al.  White matter microstructure of attentional networks predicts attention and consciousness functional interactions , 2018, Brain Structure and Function.

[117]  David A. Leopold,et al.  Temporal–prefrontal cortical network for discrimination of valuable objects in long-term memory , 2018, Proceedings of the National Academy of Sciences.

[118]  F. Pestilli Human white matter and knowledge representation , 2018, PLoS biology.

[119]  U. Castiello,et al.  Cross-talk connections underlying dorsal and ventral stream integration during hand actions , 2018, Cortex.

[120]  Ninon Burgos,et al.  New advances in the Clinica software platform for clinical neuroimaging studies , 2019 .

[121]  D. Mantini,et al.  What is special about the human arcuate fasciculus? Lateralization, projections, and expansion , 2019, Cortex.