Intentional Communication: Computationally Easy or Difficult?

Human intentional communication is marked by its flexibility and context sensitivity. Hypothesized brain mechanisms can provide convincing and complete explanations of the human capacity for intentional communication only insofar as they can match the computational power required for displaying that capacity. It is thus of importance for cognitive neuroscience to know how computationally complex intentional communication actually is. Though the subject of considerable debate, the computational complexity of communication remains so far unknown. In this paper we defend the position that the computational complexity of communication is not a constant, as some views of communication seem to hold, but rather a function of situational factors. We present a methodology for studying and characterizing the computational complexity of communication under different situational constraints. We illustrate our methodology for a model of the problems solved by receivers and senders during a communicative exchange. This approach opens the way to a principled identification of putative model parameters that control cognitive processes supporting intentional communication.

[1]  Michael C. Frank,et al.  PSYCHOLOGICAL SCIENCE Research Article Using Speakers ’ Referential Intentions to Model Early Cross-Situational Word Learning , 2022 .

[2]  Michael R. Fellows,et al.  Parameterized Complexity , 1998 .

[3]  Raymond J. Dolan,et al.  Game Theory of Mind , 2008, PLoS Comput. Biol..

[4]  Zoubin Ghahramani,et al.  Computational principles of movement neuroscience , 2000, Nature Neuroscience.

[5]  Zoubin Ghahramani,et al.  Learning Dynamic Bayesian Networks , 1997, Summer School on Neural Networks.

[6]  Peter Lipton,et al.  Inference to the best explanation , 1993 .

[7]  J. Kwisthout,et al.  The Computational Complexity of Probabilistic Networks , 2009 .

[8]  Kensy Cooperrider Roots of human sociality: culture, cognition and interaction , 2009 .

[9]  A. Mukovskiy,et al.  A dynamic model for action understanding and goal-directed imitation , 2006, Brain Research.

[10]  Christopher Lueg,et al.  Looking under the rug: Context and context-aware artifacts , 2002 .

[11]  R. Bellman A Markovian Decision Process , 1957 .

[12]  Jun Tani,et al.  Motor primitive and sequence self-organization in a hierarchical recurrent neural network , 2004, Neural Networks.

[13]  Peter Norvig,et al.  Artificial Intelligence: A Modern Approach , 1995 .

[14]  Iris van Rooij,et al.  Approximating Solution Structure , 2007, Structure Theory and FPT Algorithmics for Graphs, Digraphs and Hypergraphs.

[15]  Patricia A. Evans,et al.  Identifying Sources of Intractability in Cognitive Models: An Illustration Using Analogical Structure Mapping , 2008 .

[16]  G. Rizzolatti,et al.  The mirror-neuron system. , 2004, Annual review of neuroscience.

[17]  Lance Fortnow,et al.  The status of the P versus NP problem , 2009, CACM.

[18]  Iris van Rooij,et al.  Intractability and the use of heuristics in psychological explanations , 2012, Synthese.

[19]  D. Wolpert,et al.  Mental state inference using visual control parameters. , 2005, Brain research. Cognitive brain research.

[20]  Giorgio Gambosi,et al.  Complexity and approximation: combinatorial optimization problems and their approximability properties , 1999 .

[21]  Daniel M. Wolpert,et al.  Forward Models for Physiological Motor Control , 1996, Neural Networks.

[22]  Jelle Gerbrandy,et al.  Dynamic epistemic logic , 1998 .

[23]  J. Mazziotta,et al.  Cortical mechanisms of human imitation. , 1999, Science.

[24]  M. Pickering,et al.  Toward a mechanistic psychology of dialogue , 2004, Behavioral and Brain Sciences.

[25]  Wei Ji Ma,et al.  Bayesian inference with probabilistic population codes , 2006, Nature Neuroscience.

[26]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .

[27]  Peter Dayan,et al.  The role of value systems in decision making. , 2008 .

[28]  Willem F. G. Haselager,et al.  Cognitive Science and Folk Psychology: The Right Frame of Mind , 1997 .

[29]  Pablo Rychter Modularidad y teoría computacional de la mente en la obra de Jerry Fodor: Nota crítica en torno a The Mind Doesn't Work that Way , 2002 .

[30]  Z. Pylyshyn Robot's Dilemma: The Frame Problem in Artificial Intelligence , 1987 .

[31]  Y. Niv,et al.  Learning latent structure: carving nature at its joints , 2010, Current Opinion in Neurobiology.

[32]  Georg Gottlob,et al.  The complexity of logic-based abduction , 1993, JACM.

[33]  Finn V. Jensen,et al.  Bayesian Networks and Decision Graphs , 2001, Statistics for Engineering and Information Science.

[34]  Paul Thagard,et al.  Coherence as Constraint Satisfaction , 2019, Cogn. Sci..

[35]  Noah D. Goodman,et al.  Teaching Games : Statistical Sampling Assumptions for Learning in Pedagogical Situations , 2008 .

[36]  P. Thagard,et al.  Coherence in Thought and Action , 2000 .

[37]  W. Singer,et al.  Better than conscious? : decision making, the human mind, and implications for institutions , 2008 .

[38]  Sanjeev Arora,et al.  Polynomial time approximation schemes for Euclidean TSP and other geometric problems , 1996, Proceedings of 37th Conference on Foundations of Computer Science.

[39]  Scott Aaronson,et al.  NP-complete Problems and Physical Reality , 2005, Electron. Colloquium Comput. Complex..

[40]  Dániel Marx,et al.  Parameterized Complexity and Approximation Algorithms , 2008, Comput. J..

[41]  Simon Garrod,et al.  Experimental Semiotics: A Review , 2010, Front. Hum. Neurosci..

[42]  Johan Kwisthout,et al.  Bayesian Intractability Is Not an Ailment That Approximation Can Cure , 2011, Cogn. Sci..

[43]  J. Fodor The Modularity of mind. An essay on faculty psychology , 1986 .

[44]  H. Bekkering,et al.  What do mirror neurons mirror? , 2011 .

[45]  S. Levinson Interactional biases in human thinking , 1995 .

[46]  Iris van Rooij,et al.  The Tractable Cognition Thesis , 2008, Cogn. Sci..

[47]  G. Rizzolatti,et al.  Neurophysiological mechanisms underlying the understanding and imitation of action , 2001, Nature Reviews Neuroscience.

[48]  Gustav Nordh,et al.  What makes propositional abduction tractable , 2008, Artif. Intell..

[49]  P. Luff,et al.  Cognition and technology : co-existence, convergence, and co-evolution , 2004 .

[50]  Adam N Sanborn,et al.  Rational approximations to rational models: alternative algorithms for category learning. , 2010, Psychological review.

[51]  A. Darwiche,et al.  Complexity Results and Approximation Strategies for MAP Explanations , 2011, J. Artif. Intell. Res..

[52]  J. Mazziotta,et al.  Grasping the Intentions of Others with One's Own Mirror Neuron System , 2005, PLoS biology.

[53]  H. Barlow Vision: A computational investigation into the human representation and processing of visual information: David Marr. San Francisco: W. H. Freeman, 1982. pp. xvi + 397 , 1983 .

[54]  Jan Arne Telle,et al.  An Overview of Techniques for Designing Parameterized Algorithms , 2008, Comput. J..

[55]  Selmer Bringsjord,et al.  P=np , 2004, ArXiv.

[56]  J. Fodor,et al.  The Modularity of Mind: An Essay on Faculty Psychology , 1984 .

[57]  M. Jeannerod,et al.  The motor theory of social cognition: a critique , 2005, Trends in Cognitive Sciences.

[58]  Iris van Rooij,et al.  Parameterized Complexity in Cognitive Modeling: Foundations, Applications and Opportunities , 2008, Comput. J..

[59]  Stephen C. Levinson,et al.  On the human ‘interactional engine’ , 2006 .

[60]  Karl J. Friston,et al.  The mirror-neuron system: a Bayesian perspective. , 2007, Neuroreport.

[61]  Karl J. Friston,et al.  Predictive coding: an account of the mirror neuron system , 2007, Cognitive Processing.

[62]  P. Hagoort,et al.  Language beyond action , 2008, Journal of Physiology-Paris.