Layered reward signaling through octopamine and dopamine in Drosophila

[1]  Alexandra Horowitz,et al.  Smelling more or less: Investigating the olfactory experience of the domestic dog , 2013 .

[2]  Ben A. Barres,et al.  Emerging roles of astrocytes in neural circuit development , 2013, Nature Reviews Neuroscience.

[3]  E. Kravitz,et al.  Single dopaminergic neurons that modulate aggression in Drosophila , 2013, Proceedings of the National Academy of Sciences.

[4]  Minrong Ai,et al.  Taste-independent nutrient selection is mediated by a brain-specific Na+/solute cotransporter in Drosophila , 2013, Nature Neuroscience.

[5]  T. Tanimura,et al.  Suppression of Conditioned Odor Approach by Feeding Is Independent of Taste and Nutritional Value in Drosophila , 2013, Current Biology.

[6]  J. Bauer,et al.  Organically Grown Food Provides Health Benefits to Drosophila melanogaster , 2013, PloS one.

[7]  T. Miyamoto,et al.  A Fructose Receptor Functions as a Nutrient Sensor in the Drosophila Brain , 2012, Cell.

[8]  T. Tanimura,et al.  Taste preference for amino acids is dependent on internal nutritional state in Drosophila melanogaster , 2012, Journal of Experimental Biology.

[9]  G. Rubin,et al.  A subset of dopamine neurons signals reward for odour memory in Drosophila , 2012, Nature.

[10]  Yoshinori Aso,et al.  Three Dopamine Pathways Induce Aversive Odor Memories with Different Stability , 2012, PLoS genetics.

[11]  Pavel M. Itskov,et al.  The Dilemmas of the Gourmet Fly: The Molecular and Neuronal Mechanisms of Feeding and Nutrient Decision Making in Drosophila , 2012, Front. Neurosci..

[12]  M. Yoshihara Simultaneous Recording of Calcium Signals from Identified Neurons and Feeding Behavior of Drosophila melanogaster , 2012, Journal of visualized experiments : JoVE.

[13]  J. Rothman,et al.  Sexual Deprivation Increases Ethanol Intake in Drosophila , 2012, Science.

[14]  Kevin J Mann,et al.  Dopaminergic Modulation of Sucrose Acceptance Behavior in Drosophila , 2012, Neuron.

[15]  Michael J. Krashes,et al.  A Pair of Inhibitory Neurons Are Required to Sustain Labile Memory in the Drosophila Mushroom Body , 2011, Current Biology.

[16]  T. Tanimura,et al.  Drosophila Evaluates and Learns the Nutritional Value of Sugars , 2011, Current Biology.

[17]  S. Waddell,et al.  Remembering Nutrient Quality of Sugar in Drosophila , 2011, Current Biology.

[18]  J. Hirsh,et al.  A Drosophila model for alcohol reward , 2011, Nature Neuroscience.

[19]  James Ashley,et al.  Autoregulatory and paracrine control of synaptic and behavioral plasticity by octopaminergic signaling , 2011, Nature Neuroscience.

[20]  Christopher J. Potter,et al.  A versatile in vivo system for directed dissection of gene expression patterns , 2011, Nature Methods.

[21]  F. Marion-Poll,et al.  Parallel Reinforcement Pathways for Conditioned Food Aversions in the Honeybee , 2010, Current Biology.

[22]  Matthias Landgraf,et al.  Genetically encoded dendritic marker sheds light on neuronal connectivity in Drosophila , 2010, Proceedings of the National Academy of Sciences.

[23]  E. Kravitz,et al.  Octopamine Neuromodulatory Effects on a Social Behavior Decision-Making Network in Drosophila Males , 2010, PloS one.

[24]  S. Waddell Dopamine reveals neural circuit mechanisms of fly memory , 2010, Trends in Neurosciences.

[25]  Yoshinori Aso,et al.  Specific Dopaminergic Neurons for the Formation of Labile Aversive Memory , 2010, Current Biology.

[26]  Kristin Scott,et al.  Limited taste discrimination in Drosophila , 2010, Proceedings of the National Academy of Sciences.

[27]  B. Dickson,et al.  Sex Peptide Receptor and Neuronal TOR/S6K Signaling Modulate Nutrient Balancing in Drosophila , 2010, Current Biology.

[28]  W. Schultz Subjective neuronal coding of reward: temporal value discounting and risk , 2010, The European journal of neuroscience.

[29]  E. Kravitz,et al.  Targeted Manipulation of Serotonergic Neurotransmission Affects the Escalation of Aggression in Adult Male Drosophila melanogaster , 2010, PloS one.

[30]  J. Ngai,et al.  The molecular basis for water taste in Drosophila , 2010, Nature.

[31]  I. Levitan,et al.  Identification of a Neural Circuit that Underlies the Effects of Octopamine on Sleep:Wake Behavior , 2010, Neuron.

[32]  J. Niven,et al.  Are Bigger Brains Better? , 2009, Current Biology.

[33]  Sreekanth H. Chalasani,et al.  Imaging neural activity in worms, flies and mice with improved GCaMP calcium indicators , 2009, Nature Methods.

[34]  Shamik Dasgupta,et al.  A Neural Circuit Mechanism Integrating Motivational State with Memory Expression in Drosophila , 2009, Cell.

[35]  P. Greengard,et al.  Writing Memories with Light-Addressable Reinforcement Circuitry , 2009, Cell.

[36]  N. Ryba,et al.  Common Sense about Taste: From Mammals to Insects , 2009, Cell.

[37]  Aike Guo,et al.  Choice strategies in Drosophila are based on competition between olfactory memories , 2009, The European journal of neuroscience.

[38]  A. Sclafani,et al.  Rapid acquisition of conditioned flavor preferences in rats , 2009, Physiology & Behavior.

[39]  O. Hikosaka,et al.  Two types of dopamine neuron distinctly convey positive and negative motivational signals , 2009, Nature.

[40]  T. Préat,et al.  Parametric and genetic analysis of Drosophila appetitive long‐term memory and sugar motivation , 2009, Genes, brain, and behavior.

[41]  Ronald L. Davis,et al.  Frontiers in Neural Circuits Neural Circuits , 2022 .

[42]  Kei Ito,et al.  A map of octopaminergic neurons in the Drosophila brain , 2009, The Journal of comparative neurology.

[43]  D. Jones,et al.  Carbohydrate sensing in the human mouth: effects on exercise performance and brain activity , 2009, The Journal of physiology.

[44]  S. Budhiraja,et al.  Neuromedin U: physiology, pharmacology and therapeutic potential , 2009, Fundamental & clinical pharmacology.

[45]  E. Kravitz,et al.  Analysis of neuropeptide expression and localization in adult drosophila melanogaster central nervous system by affinity cell-capture mass spectrometry. , 2009, Journal of proteome research.

[46]  Kristin Scott,et al.  Motor Control in a Drosophila Taste Circuit , 2009, Neuron.

[47]  A. Sehgal,et al.  Octopamine Regulates Sleep in Drosophila through Protein Kinase A-Dependent Mechanisms , 2008, The Journal of Neuroscience.

[48]  P. Garrity,et al.  An internal thermal sensor controlling temperature preference in Drosophila , 2008, Nature.

[49]  Kei Ito,et al.  Neuronal assemblies of the Drosophila mushroom body , 2008, The Journal of comparative neurology.

[50]  M. Nicolelis,et al.  Food Reward in the Absence of Taste Receptor Signaling , 2008, Neuron.

[51]  S. Waddell,et al.  Rapid Consolidation to a radish and Protein Synthesis-Dependent Long-Term Memory after Single-Session Appetitive Olfactory Conditioning in Drosophila , 2008, The Journal of Neuroscience.

[52]  P. Breslin,et al.  Drosophila melanogaster prefers compounds perceived sweet by humans. , 2008, Chemical senses.

[53]  Cori Bargmann,et al.  GFP Reconstitution Across Synaptic Partners (GRASP) Defines Cell Contacts and Synapses in Living Nervous Systems , 2008, Neuron.

[54]  Sonya M. Kottcamp,et al.  Olfactory memory formation and the influence of reward pathway during appetitive learning by honey bees , 2007, Journal of Experimental Biology.

[55]  J. Carlson,et al.  Two Gr Genes Underlie Sugar Reception in Drosophila , 2007, Neuron.

[56]  H. Amrein,et al.  Sugar Receptors in Drosophila , 2007, Current Biology.

[57]  C. Dotson,et al.  Behavioral Discrimination between Sucrose and Other Natural Sweeteners in Mice: Implications for the Neural Coding of T1R Ligands , 2007, The Journal of Neuroscience.

[58]  K. Han,et al.  D1 Dopamine Receptor dDA1 Is Required in the Mushroom Body Neurons for Aversive and Appetitive Learning in Drosophila , 2007, The Journal of Neuroscience.

[59]  B. Dickson,et al.  A genome-wide transgenic RNAi library for conditional gene inactivation in Drosophila , 2007, Nature.

[60]  O. Hikosaka,et al.  Lateral habenula as a source of negative reward signals in dopamine neurons , 2007, Nature.

[61]  M. Pankratz,et al.  Genetic dissection of neural circuit anatomy underlying feeding behavior in Drosophila: Distinct classes of hugin‐expressing neurons , 2007, The Journal of comparative neurology.

[62]  J. Carlson,et al.  Proboscis extension response (PER) assay in Drosophila. , 2007, Journal of visualized experiments : JoVE.

[63]  E. Kravitz,et al.  Modulation of Drosophila male behavioral choice , 2007, Proceedings of the National Academy of Sciences.

[64]  S. Waddell,et al.  Sequential Use of Mushroom Body Neuron Subsets during Drosophila Odor Memory Processing , 2007, Neuron.

[65]  G. Nagel,et al.  Light-Induced Activation of Distinct Modulatory Neurons Triggers Appetitive or Aversive Learning in Drosophila Larvae , 2006, Current Biology.

[66]  Michael J. Krashes,et al.  Drosophila Dorsal Paired Medial Neurons Provide a General Mechanism for Memory Consolidation , 2006, Current Biology.

[67]  T. Hicks,et al.  The mysterious trace amines: Protean neuromodulators of synaptic transmission in mammalian brain , 2006, Progress in Neurobiology.

[68]  Joseph E LeDoux,et al.  Noradrenergic Signaling in the Amygdala Contributes to the Reconsolidation of Fear Memory , 2006, Annals of the New York Academy of Sciences.

[69]  Sen-Lin Lai,et al.  Genetic mosaic with dual binary transcriptional systems in Drosophila , 2006, Nature Neuroscience.

[70]  Stephan J. Sigrist,et al.  Bruchpilot, a Protein with Homology to ELKS/CAST, Is Required for Structural Integrity and Function of Synaptic Active Zones in Drosophila , 2006, Neuron.

[71]  N. Strausfeld,et al.  Comparison of octopamine‐like immunoreactivity in the brains of the fruit fly and blow fly , 2006, The Journal of comparative neurology.

[72]  Kristin Scott,et al.  Imaging Taste Responses in the Fly Brain Reveals a Functional Map of Taste Category and Behavior , 2006, Neuron.

[73]  M. V. van Osch,et al.  Functional magnetic resonance imaging of human hypothalamic responses to sweet taste and calories. , 2005, The American journal of clinical nutrition.

[74]  P. Shen,et al.  Regulation of hunger-driven behaviors by neural ribosomal S6 kinase in Drosophila. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[75]  H. Amrein,et al.  Gustatory Perception and Behavior in Drosophila melanogaster , 2005, Current Biology.

[76]  M. Pankratz,et al.  Candidate Gustatory Interneurons Modulating Feeding Behavior in the Drosophila Brain , 2005, PLoS biology.

[77]  S. Frings,et al.  A family of octopamine receptors that specifically induce cyclic AMP production or Ca2+ release in Drosophila melanogaster , 2005 .

[78]  刘金明,et al.  IL-13受体α2降低血吸虫病肉芽肿的炎症反应并延长宿主存活时间[英]/Mentink-Kane MM,Cheever AW,Thompson RW,et al//Proc Natl Acad Sci U S A , 2005 .

[79]  P. Evans,et al.  Identification and characterization of a novel family of Drosophilaβ‐adrenergic‐like octopamine G‐protein coupled receptors , 2005 .

[80]  J. Hirsh,et al.  Two Functional but Noncomplementing Drosophila Tyrosine Decarboxylase Genes , 2005, Journal of Biological Chemistry.

[81]  Mandyam V Srinivasan,et al.  Visual working memory in decision making by honey bees. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[82]  Stephan Frings,et al.  A family of octapamine receptors that specifically induce cyclic AMP production or Ca2+ release in Drosophila melanogaster , 2005 .

[83]  Joseph E LeDoux,et al.  Disruption of reconsolidation but not consolidation of auditory fear conditioning by noradrenergic blockade in the amygdala , 2004, Neuroscience.

[84]  S. Waddell,et al.  Diverse Odor-Conditioned Memories Require Uniquely Timed Dorsal Paired Medial Neuron Output , 2004, Neuron.

[85]  M. Ikawa,et al.  Neuromedin U has a novel anorexigenic effect independent of the leptin signaling pathway , 2004, Nature Medicine.

[86]  Kristin Scott,et al.  Taste Representations in the Drosophila Brain , 2004, Cell.

[87]  H. Amrein,et al.  Taste Perception and Coding in Drosophila , 2004, Current Biology.

[88]  R. Wise Dopamine, learning and motivation , 2004, Nature Reviews Neuroscience.

[89]  A. Sclafani,et al.  Ethanol-conditioned flavor preferences compared with sugar- and fat-conditioned preferences in rats , 2004, Physiology & Behavior.

[90]  J. Bolam,et al.  Uniform Inhibition of Dopamine Neurons in the Ventral Tegmental Area by Aversive Stimuli , 2004, Science.

[91]  Ronald L. Davis,et al.  Octopamine receptor OAMB is required for ovulation in Drosophila melanogaster. , 2003, Developmental biology.

[92]  M. Heisenberg,et al.  Dopamine and Octopamine Differentiate between Aversive and Appetitive Olfactory Memories in Drosophila , 2003, The Journal of Neuroscience.

[93]  N. Ryba,et al.  The Receptors for Mammalian Sweet and Umami Taste , 2003, Cell.

[94]  T. Wen,et al.  Developmental Control of Foraging and Social Behavior by the Drosophila Neuropeptide Y-like System , 2003, Neuron.

[95]  K. Han,et al.  Expression of a D1 dopamine receptor dDA1/DmDOP1 in the central nervous system of Drosophila melanogaster. , 2003, Gene expression patterns : GEP.

[96]  M. Heisenberg Mushroom body memoir: from maps to models , 2003, Nature Reviews Neuroscience.

[97]  Jay Hirsh,et al.  Targeted gene expression in Drosophila dopaminergic cells using regulatory sequences from tyrosine hydroxylase. , 2003, Journal of neurobiology.

[98]  P. Dayan,et al.  Reward, Motivation, and Reinforcement Learning , 2002, Neuron.

[99]  D. Nässel Neuropeptides in the nervous system of Drosophila and other insects: multiple roles as neuromodulators and neurohormones , 2002, Progress in Neurobiology.

[100]  J. Glowinski,et al.  α1b-Adrenergic Receptors Control Locomotor and Rewarding Effects of Psychostimulants and Opiates , 2002, The Journal of Neuroscience.

[101]  J. Carlson,et al.  A Gr receptor is required for response to the sugar trehalose in taste neurons of Drosophila , 2001, Nature Neuroscience.

[102]  T. Kitamoto Conditional modification of behavior in Drosophila by targeted expression of a temperature-sensitive shibire allele in defined neurons. , 2001, Journal of neurobiology.

[103]  Andrey Rzhetsky,et al.  A Chemosensory Gene Family Encoding Candidate Gustatory and Olfactory Receptors in Drosophila , 2001, Cell.

[104]  A. Sclafani,et al.  Post-ingestive positive controls of ingestive behavior , 2001, Appetite.

[105]  W. Quinn,et al.  The amnesiac Gene Product Is Expressed in Two Neurons in the Drosophila Brain that Are Critical for Memory , 2000, Cell.

[106]  J. Carlson,et al.  Candidate taste receptors in Drosophila. , 2000, Science.

[107]  Liqun Luo,et al.  Mosaic Analysis with a Repressible Cell Marker for Studies of Gene Function in Neuronal Morphogenesis , 1999, Neuron.

[108]  K. Han,et al.  A Novel Octopamine Receptor with Preferential Expression inDrosophila Mushroom Bodies , 1998, The Journal of Neuroscience.

[109]  M. Hammer,et al.  Multiple sites of associative odor learning as revealed by local brain microinjections of octopamine in honeybees. , 1998, Learning & memory.

[110]  D. Raubenheimer,et al.  Associative learning by locusts: pairing of visual cues with consumption of protein and carbohydrate , 1997, Animal Behaviour.

[111]  S. Schmid,et al.  Domain structure and intramolecular regulation of dynamin GTPase , 1997, The EMBO journal.

[112]  Peter Dayan,et al.  A Neural Substrate of Prediction and Reward , 1997, Science.

[113]  M. Monastirioti,et al.  Characterization of Drosophila Tyramine β-HydroxylaseGene and Isolation of Mutant Flies Lacking Octopamine , 1996, The Journal of Neuroscience.

[114]  W. Quinn,et al.  A neuropeptide gene defined by the Drosophila memory mutant amnesiac. , 1995, Science.

[115]  M. Hammer,et al.  Learning and memory in the honeybee , 1995 .

[116]  A M Schneiderman,et al.  Regulation of feeding behavior in adult Drosophila melanogaster varies with feeding regime and nutritional state. , 1994, The Journal of experimental biology.

[117]  T. Préat,et al.  Genetic dissection of consolidated memory in Drosophila , 1994, Cell.

[118]  G. Beauchamp,et al.  Single sweetness signal , 1994, Nature.

[119]  M. Hammer An identified neuron mediates the unconditioned stimulus in associative olfactory learning in honeybees , 1993, Nature.

[120]  N. Perrimon,et al.  Targeted gene expression as a means of altering cell fates and generating dominant phenotypes. , 1993, Development.

[121]  Ronald L. Davis,et al.  The Drosophila learning and memory gene rutabaga encodes a Ca 2+ calmodulin -responsive , 1992, Cell.

[122]  S. J. Simpson,et al.  Associative learning and locust feeding: evidence for a ‘learned hunger’ for protein , 1990, Animal Behaviour.

[123]  G. Sanacora,et al.  Increased hypothalamic content of preproneuropeptide Y messenger ribonucleic acid in genetically obese Zucker rats and its regulation by food deprivation. , 1990, Endocrinology.

[124]  R. Davis,et al.  Cloning and characterization of mammalian homologs of the Drosophila dunce+ gene. , 1989, Proceedings of the National Academy of Sciences of the United States of America.

[125]  G. Nomikos,et al.  Intravenous cocaine-induced place preference: attenuation by haloperidol , 1987, Behavioural Brain Research.

[126]  W. Quinn,et al.  Classical conditioning and retention in normal and mutantDrosophila melanogaster , 1985, Journal of Comparative Physiology A.

[127]  M. Livingstone,et al.  Loss of calcium/calmodulin responsiveness in adenylate cyclase of rutabaga, a Drosophila learning mutant , 1984, Cell.

[128]  M. Bitterman,et al.  Classical conditioning of proboscis extension in honeybees (Apis mellifera). , 1983, Journal of comparative psychology.

[129]  K. Ikeda,et al.  Reversible control of synaptic transmission in a single gene mutant of Drosophila melanogaster , 1983, The Journal of cell biology.

[130]  Bruce L. Tempel,et al.  Reward learning in normal and mutant Drosophila. , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[131]  Ichiro Shimada,et al.  Genetic dimorphism in the taste sensitivity to trehalose inDrosophila melanogaster , 1982, Journal of comparative physiology.

[132]  R. Wise,et al.  Pimozide attenuates acquisition of lever-pressing for food in rats , 1981, Pharmacology Biochemistry and Behavior.

[133]  W. Quinn,et al.  The Drosophila memory mutant amnesiac , 1979, Nature.

[134]  Y. Jan,et al.  dunce, a mutant of Drosophila deficient in learning. , 1976, Proceedings of the National Academy of Sciences of the United States of America.

[135]  C. Gallistel,et al.  Parametric analysis of brain stimulation reward in the rat: I. The transient process and the memory-containing process. , 1974, Journal of comparative and physiological psychology.

[136]  W. Harris,et al.  Conditioned behavior in Drosophila melanogaster. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[137]  John Tyler Bonner,et al.  Morphogenesis , 1965, The Physics of Living Matter: Space, Time and Information.

[138]  R. A. Koelling,et al.  Conditioned aversion to saccharin resulting from exposure to gamma radiation. , 1955, Science.

[139]  V. Wigglesworth,et al.  The utilization of reserve substances in Drosophila during flight. , 1949, The Journal of experimental biology.

[140]  C. C. Hassett The utilization of sugars and other substances by Drosophila. , 1948, The Biological bulletin.

[141]  I. D. de Araujo,et al.  Metabolic sensing in brain dopamine systems. , 2010, Results and problems in cell differentiation.

[142]  O. Hikosaka,et al.  Representation of negative motivational value in the primate lateral habenula , 2009, Nature Neuroscience.

[143]  P. Evans,et al.  Identification and characterization of a novel family of Drosophila beta-adrenergic-like octopamine G-protein coupled receptors. , 2005, Journal of neurochemistry.

[144]  S. Frings,et al.  A family of octopamine [corrected] receptors that specifically induce cyclic AMP production or Ca2+ release in Drosophila melanogaster. , 2005, Journal of neurochemistry.

[145]  A. Phillips,et al.  Attenuation by haloperidol of place preference conditioning using food reinforcement , 2004, Psychopharmacology.

[146]  C. Lawrence,et al.  Printed in U.S.A. Copyright © 2002 by The Endocrine Society doi: 10.1210/en.2002-220121 Evaluation of Neuromedin U Actions in Energy Homeostasis and Pituitary Function , 2022 .