Interactive time-dependent tone mapping using programmable graphics hardware

Modern graphics architectures have replaced stages of the graphics pipeline with fully programmable modules. Therefore, it is now possible to perform fairly general computation on each vertex or fragment in a scene. In addition, the nature of the graphics pipeline makes substantial computational power available if the programs have a suitable structure. In this paper, we show that it is possible to cleanly map a state-of-the-art tone mapping algorithm to the pixel processor. This allows an interactive application to achieve higher levels of realism by rendering with physically based, unclamped lighting values and high dynamic range texture maps. We also show that the tone mapping operator can easily be extended to include a time-dependent model, which is crucial for interactive behavior. Finally, we describe the ways in which the graphics hardware limits our ability to compress dynamic range efficiently, and discuss modifications to the algorithm that could alleviate these problems.

[1]  Pat Hanrahan,et al.  Ray tracing on programmable graphics hardware , 2002, SIGGRAPH Courses.

[2]  Mark Segal,et al.  The OpenGL Graphics System: A Specification , 2004 .

[3]  Greg Humphreys,et al.  A multigrid solver for boundary value problems using programmable graphics hardware , 2003, HWWS '03.

[4]  Kenneth Moreland,et al.  The FFT on a GPU , 2003, HWWS '03.

[5]  GrinspunEitan,et al.  Sparse matrix solvers on the GPU , 2003 .

[6]  Eitan Grinspun,et al.  Sparse matrix solvers on the GPU: conjugate gradients and multigrid , 2003, ACM Trans. Graph..

[7]  William R. Mark,et al.  Cg: a system for programming graphics hardware in a C-like language , 2003, ACM Trans. Graph..

[8]  J. Krüger,et al.  Linear algebra operators for GPU implementation of numerical algorithms , 2003, ACM Trans. Graph..

[9]  Mark Oskin,et al.  Using modern graphics architectures for general-purpose computing: a framework and analysis , 2002, 35th Annual IEEE/ACM International Symposium on Microarchitecture, 2002. (MICRO-35). Proceedings..

[10]  Werner Purgathofer,et al.  Tone Reproduction and Physically Based Spectral Rendering , 2002, Eurographics.

[11]  Anselmo Lastra,et al.  Physically-based visual simulation on graphics hardware , 2002, HWWS '02.

[12]  FattalRaanan,et al.  Gradient domain high dynamic range compression , 2002 .

[13]  ShirleyPeter,et al.  Photographic tone reproduction for digital images , 2002 .

[14]  Erik Reinhard,et al.  Photographic tone reproduction for digital images , 2002, ACM Trans. Graph..

[15]  Dani Lischinski,et al.  Gradient Domain High Dynamic Range Compression , 2023 .

[16]  Greg Humphreys,et al.  Chromium: a stream-processing framework for interactive rendering on clusters , 2002, SIGGRAPH.

[17]  别理我 ATI RADEON 9700 PRO , 2002 .

[18]  David K. McAllister,et al.  Fast Matrix Multiplies Using Graphics Hardware , 2001, ACM/IEEE SC 2001 Conference (SC'01).

[19]  Paul E. Debevec,et al.  Real-Time High Dynamic Range Texture Mapping , 2001, Rendering Techniques.

[20]  Martin Rumpf,et al.  Nonlinear Diffusion in Graphics Hardware , 2001, VisSym.

[21]  Hans-Peter Seidel,et al.  Tone Reproduction for Interactive Walkthroughs , 2000, Comput. Graph. Forum.

[22]  Frédo Durand,et al.  Interactive Tone Mapping , 2000, Rendering Techniques.

[23]  Dinesh Manocha,et al.  Fast computation of generalized Voronoi diagrams using graphics hardware , 1999, SIGGRAPH.

[24]  Ming C. Lin,et al.  Fast computation of generalized Voronoi diagrams using graphics hardware , 1999, SIGGRAPH '99.

[25]  Greg Turk,et al.  LCIS: a boundary hierarchy for detail-preserving contrast reduction , 1999, SIGGRAPH.

[26]  Jessica K. Hodgins,et al.  Two methods for display of high contrast images , 1999, TOGS.

[27]  Donald P. Greenberg,et al.  A multiscale model of adaptation and spatial vision for realistic image display , 1998, SIGGRAPH.

[28]  Alexander Keller,et al.  Instant radiosity , 1997, SIGGRAPH.

[29]  Zia-ur Rahman,et al.  A multiscale retinex for bridging the gap between color images and the human observation of scenes , 1997, IEEE Trans. Image Process..

[30]  Christine D. Piatko,et al.  A visibility matching tone reproduction operator for high dynamic range scenes , 1997, SIGGRAPH '97.

[31]  Christophe Schlick,et al.  Quantization Techniques for Visualization of High Dynamic Range Pictures , 1995 .

[32]  Greg Ward,et al.  A Contrast-Based Scalefactor for Luminance Display , 1994, Graphics Gems.

[33]  Holly E. Rushmeier,et al.  Tone reproduction for realistic images , 1993, IEEE Computer Graphics and Applications.

[34]  Kenneth Chiu,et al.  Spatially Nonuniform Scaling Functions for High Contrast Images , 1993 .

[35]  Bruce Randall Donald,et al.  Real-time robot motion planning using rasterizing computer graphics hardware , 1990, SIGGRAPH.

[36]  Donald P. Greenberg,et al.  A progressive refinement approach to fast radiosity image generation , 1988, SIGGRAPH.