States based iterative parameter estimation for a state space model with multi-state delays using decomposition

This paper is concerned with the parameter estimation of a class of time-delay systems in the state space form. By using the hierarchical identification principle, a gradient based and a least squares based iterative identification algorithms are developed to compute these parameter estimates. The basic idea is to decompose a state space system into two subsystems, one containing a parameter vector and the other containing a parameter matrix. The simulation example demonstrates the efficacy of the proposed theory. HighlightsConsider estimation problems of a class of time-delay state space systems.Use the hierarchical identification principle and the iterative technique.Present a gradient based and a least squares based iterative estimation algorithms.

[1]  Jie Sheng,et al.  Optimal filtering for multirate systems , 2005, IEEE Transactions on Circuits and Systems II: Express Briefs.

[2]  Torsten Söderström,et al.  Accuracy analysis of a covariance matching approach for identifying errors-in-variables systems , 2011, Autom..

[3]  Yuanbiao Hu,et al.  Iterative and recursive least squares estimation algorithms for moving average systems , 2013, Simul. Model. Pract. Theory.

[4]  Feng Ding,et al.  Brief Paper - Gradient-based iterative algorithm for a class of the coupled matrix equations related to control systems , 2014 .

[5]  F. Ding,et al.  Least squares algorithm for an input nonlinear system with a dynamic subspace state space model , 2014 .

[6]  Bo Yu,et al.  Robust mixed H2/H∞ control of networked control systems with random time delays in both forward and backward communication links , 2011, Autom..

[7]  D. Wang Brief paper: Lleast squares-based recursive and iterative estimation for output error moving average systems using data filtering , 2011 .

[8]  F. Ding Coupled-least-squares identification for multivariable systems , 2013 .

[9]  P. Rapisarda,et al.  Identification and data-driven model reduction of state-space representations of lossless and dissipative systems from noise-free data , 2011, Autom..

[10]  Roberto Sanchis,et al.  Recursive identification under scarce measurements - convergence analysis , 2002, Autom..

[11]  Feng Ding,et al.  An efficient hierarchical identification method for general dual-rate sampled-data systems , 2014, Autom..

[12]  Yong Zhang,et al.  Bias compensation methods for stochastic systems with colored noise , 2011 .

[13]  José Ragot,et al.  Three-stage Kalman filter for state and fault estimation of linear stochastic systems with unknown inputs , 2012, J. Frankl. Inst..

[14]  Feng Ding,et al.  Parameter estimation for a multivariable state space system with d-step state-delay , 2013, J. Frankl. Inst..

[15]  Simon X. Yang,et al.  Dynamic Task Assignment and Path Planning of Multi-AUV System Based on an Improved Self-Organizing Map and Velocity Synthesis Method in Three-Dimensional Underwater Workspace , 2013, IEEE Transactions on Cybernetics.

[16]  Rui Ding,et al.  Iterative Parameter Estimation for a Class of Multivariable Systems Based on the Hierarchical Identification Principle and the Gradient Search , 2012, Circuits Syst. Signal Process..

[17]  Graham C. Goodwin,et al.  Adaptive filtering prediction and control , 1984 .

[18]  Feng Ding,et al.  Hierarchical gradient based and hierarchical least squares based iterative parameter identification for CARARMA systems , 2014, Signal Process..

[19]  Roberto Sanchis,et al.  Output prediction under scarce data operation: control applications , 1999, Autom..

[20]  Jin-Hoon Kim,et al.  Note on stability of linear systems with time-varying delay , 2011, Autom..

[21]  Feng Ding,et al.  Decomposition Based Newton Iterative Identification Method for a Hammerstein Nonlinear FIR System with ARMA Noise , 2014, Circuits Syst. Signal Process..

[22]  Yang Shi,et al.  Output Feedback Stabilization of Networked Control Systems With Random Delays Modeled by Markov Chains , 2009, IEEE Transactions on Automatic Control.

[23]  Jie Ding,et al.  Modified Subspace Identification for Periodically Non-uniformly Sampled Systems by Using the Lifting Technique , 2013, Circuits, Systems, and Signal Processing.

[24]  Tongwen Chen,et al.  Hierarchical least squares identification methods for multivariable systems , 2005, IEEE Transactions on Automatic Control.

[25]  Dongguang Li,et al.  Identification of fast-rate models from multirate data , 2001 .

[26]  Mats Viberg,et al.  Subspace-based methods for the identification of linear time-invariant systems , 1995, Autom..

[27]  Torsten Söderström,et al.  On the accuracy in errors-in-variables identification compared to prediction-error identification , 2011, Autom..

[28]  Feng Ding,et al.  Combined state and least squares parameter estimation algorithms for dynamic systems , 2014 .

[29]  Nicholas Kalouptsidis,et al.  A sparsity driven approach to cumulant based identification and order determination , 2013, Signal Process..

[30]  Laurent Bako,et al.  Parameterization and identification of multivariable state-space systems: A canonical approach , 2011, Autom..

[31]  Yanjun Liu,et al.  Multi-innovation stochastic gradient algorithm for multiple-input single-output systems using the auxiliary model , 2009, Appl. Math. Comput..

[32]  Feng Ding,et al.  Performance analysis of the recursive parameter estimation algorithms for multivariable Box-Jenkins systems , 2014, J. Frankl. Inst..

[33]  Feng Ding,et al.  State filtering and parameter estimation for state space systems with scarce measurements , 2014, Signal Process..

[34]  Huazhen Fang,et al.  Identification of Hammerstein Output-Error Systems with Two-Segment Nonlinearities: Algorithm and Applications 1 , 2010, Control. Intell. Syst..

[35]  Lennart Ljung,et al.  The Extended Kalman Filter as a Parameter Estimator for Linear Systems , 1979 .

[36]  Brett Ninness,et al.  Robust maximum-likelihood estimation of multivariable dynamic systems , 2005, Autom..

[37]  Jing Lu,et al.  Least squares based iterative identification for a class of multirate systems , 2010, Autom..

[38]  J. Chu,et al.  Gradient-based and least-squares-based iterative algorithms for Hammerstein systems using the hierarchical identification principle , 2013 .

[39]  Huazhen Fang,et al.  Kalman filter-based identification for systems with randomly missing measurements in a network environment , 2010, Int. J. Control.

[40]  Dongguang Li,et al.  Application of dual-rate modeling to CCR octane quality inferential control , 2001, IEEE Trans. Control. Syst. Technol..

[41]  Lennart Ljung,et al.  System Identification: Theory for the User , 1987 .

[42]  Baolin Liu,et al.  Recursive Extended Least Squares Parameter Estimation for Wiener Nonlinear Systems with Moving Average Noises , 2013, Circuits, Systems, and Signal Processing.

[43]  Hui Zhang,et al.  Robust FIR equalization for time-varying communication channels with intermittent observations via an LMI approach , 2011, Signal Process..

[44]  Wei Xing Zheng,et al.  Consensus of multiple second-order vehicles with a time-varying reference signal under directed topology , 2011, Autom..

[45]  Daqi Zhu,et al.  Adaptive fault-tolerant control of non-linear systems: an improved CMAC-based fault learning approach , 2007, Int. J. Control.

[46]  Reinaldo M. Palhares,et al.  Parameter estimation on linear time-varying systems , 2011, J. Frankl. Inst..

[47]  Yanjun Liu,et al.  Consistency of the extended gradient identification algorithm for multi-input multi-output systems with moving average noises , 2013, Int. J. Comput. Math..

[48]  Jozef Vörös,et al.  Recursive identification of Hammerstein systems with discontinuous nonlinearities containing dead-zones , 2003, IEEE Trans. Autom. Control..

[49]  Jie Sheng,et al.  Convergence of stochastic gradient estimation algorithm for multivariable ARX-like systems , 2010, Comput. Math. Appl..

[50]  Feng Ding,et al.  Decomposition based fast least squares algorithm for output error systems , 2013, Signal Process..

[51]  Feng Ding,et al.  Reconstruction of continuous-time systems from their non-uniformly sampled discrete-time systems , 2009, Autom..

[52]  Feng Ding,et al.  Hierarchical gradient-based identification of multivariable discrete-time systems , 2005, Autom..

[53]  Feng Ding,et al.  Hierarchical estimation algorithms for multivariable systems using measurement information , 2014, Inf. Sci..

[54]  Rui Ding,et al.  A least squares identification algorithm for a state space model with multi-state delays , 2013, Appl. Math. Lett..

[55]  Feng Ding,et al.  Data filtering based recursive least squares algorithm for Hammerstein systems using the key-term separation principle , 2013, Inf. Sci..

[56]  Tao Tang,et al.  Recursive least squares estimation algorithm applied to a class of linear-in-parameters output error moving average systems , 2014, Appl. Math. Lett..

[57]  Feng Ding,et al.  Partially Coupled Stochastic Gradient Identification Methods for Non-Uniformly Sampled Systems , 2010, IEEE Transactions on Automatic Control.

[58]  F. Ding Two-stage least squares based iterative estimation algorithm for CARARMA system modeling ☆ , 2013 .

[59]  Junhong Li,et al.  Parameter estimation for Hammerstein CARARMA systems based on the Newton iteration , 2013, Appl. Math. Lett..

[60]  Feng Ding,et al.  Performance analysis of the auxiliary model-based least-squares identification algorithm for one-step state-delay systems , 2012, Int. J. Comput. Math..

[61]  Simon X. Yang,et al.  A Bioinspired Filtered Backstepping Tracking Control of 7000-m Manned Submarine Vehicle , 2014, IEEE Transactions on Industrial Electronics.

[62]  Jie Ding,et al.  Auxiliary model based parameter estimation for dual-rate output error systems with colored noise ☆ , 2013 .

[63]  Feng Ding,et al.  Parameter estimation with scarce measurements , 2011, Autom..

[64]  Andrew H. Jazwinski,et al.  Adaptive filtering , 1969, Autom..

[65]  F. Ding,et al.  Least‐squares parameter estimation for systems with irregularly missing data , 2009 .

[66]  Huazhen Fang,et al.  Genetic adaptive state estimation with missing input/output data , 2010 .

[67]  Jie Ding,et al.  Time series AR modeling with missing observations based on the polynomial transformation , 2010, Math. Comput. Model..

[68]  Giovanni L. Sicuranza,et al.  Efficient adaptive identification of linear-in-the-parameters nonlinear filters using periodic input sequences , 2013, Signal Process..

[69]  Yong Zhang,et al.  Unbiased identification of a class of multi-input single-output systems with correlated disturbances using bias compensation methods , 2011, Math. Comput. Model..

[70]  Feng Ding,et al.  Hierarchical identification of lifted state-space models for general dual-rate systems , 2005, IEEE Transactions on Circuits and Systems I: Regular Papers.

[71]  Alexander Medvedev,et al.  Laguerre domain identification of continuous linear time delay systems from impulse response data , 2011 .

[72]  Danilo Comminiello,et al.  Nonlinear spline adaptive filtering , 2013, Signal Process..

[73]  Yong He,et al.  Delay-dependent criteria for robust stability of time-varying delay systems , 2004, Autom..

[74]  Alf J. Isaksson,et al.  Extensions to "Output prediction under scarce data operation: control applications" , 2001, Autom..

[75]  Roberto Sanchis,et al.  Design of robust output predictors under scarce measurements with time-varying delays , 2007, Autom..

[76]  Qian Liu,et al.  Fault-tolerant control algorithm of the manned submarine with multi-thruster based on quantum-behaved particle swarm optimisation , 2011, Int. J. Control.

[77]  Sirish L. Shah,et al.  Identification of chemical processes with irregular output sampling , 2006 .

[78]  MercèreGuillaume,et al.  Parameterization and identification of multivariable state-space systems , 2011 .