A new kernel-based approach for linear system identification
暂无分享,去创建一个
[1] L. Ljung,et al. Design variables for bias distribution in transfer function estimation , 1986, The 23rd IEEE Conference on Decision and Control.
[2] J. Norton,et al. Bounding Approaches to System Identification , 1996 .
[3] P.M. Mäkilä,et al. Worst-case control-relevant identification , 1995, Autom..
[4] Gianluigi Pillonetto,et al. Bayes and empirical Bayes semi-blind deconvolution using eigenfunctions of a prior covariance , 2007, Autom..
[5] Tor Arne Johansen,et al. On Tikhonov regularization, bias and variance in nonlinear system identification , 1997, Autom..
[6] G. Wahba. Support vector machines, reproducing kernel Hilbert spaces, and randomized GACV , 1999 .
[7] N. Aronszajn. Theory of Reproducing Kernels. , 1950 .
[8] Christopher M. Bishop,et al. Neural networks and machine learning , 1998 .
[9] Alessandro Chiuso,et al. Predictor estimation via Gaussian regression , 2008, 2008 47th IEEE Conference on Decision and Control.
[10] Giuseppe De Nicolao,et al. Nonparametric identification of population models via Gaussian processes , 2007, Autom..
[11] Hongwei Sun,et al. Mercer theorem for RKHS on noncompact sets , 2005, J. Complex..
[12] Mathukumalli Vidyasagar,et al. A Theory of Learning and Generalization , 1997 .
[13] Huaiyu Zhu,et al. Bayesian regression filters and the issue of priors , 1996, Neural Computing & Applications.
[14] G. Pillonetto,et al. Estimating parameters and stochastic functions of one variable using nonlinear measurement models , 2004 .
[15] Mario Milanese,et al. H∞ identification and model quality evaluation , 1997, IEEE Trans. Autom. Control..
[16] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.
[17] Antonio Vicino,et al. Optimal estimation theory for dynamic systems with set membership uncertainty: An overview , 1991, Autom..
[18] P. V. D. Hof,et al. Identification of probabilistic system uncertainty regions by explicit evaluation of bias and variance errors , 1997, IEEE Trans. Autom. Control..
[19] Felipe Cucker,et al. On the mathematical foundations of learning , 2001 .
[20] Gianluigi Pillonetto,et al. Input estimation in nonlinear dynamical systems using differential algebra techniques , 2006, Autom..
[21] A. N. Tikhonov,et al. Solutions of ill-posed problems , 1977 .
[22] Carl E. Rasmussen,et al. In Advances in Neural Information Processing Systems , 2011 .
[23] Manfred Opper,et al. Finite-Dimensional Approximation of Gaussian Processes , 1998, NIPS.
[24] R. Tapia,et al. Nonparametric Function Estimation, Modeling, and Simulation , 1987 .
[25] Graham C. Goodwin,et al. Non-stationary stochastic embedding for transfer function estimation , 1999, Autom..
[26] Andrea Garulli,et al. Conditional central algorithms for worst case set-membership identification and filtering , 2000, IEEE Trans. Autom. Control..
[27] MethodsDavid,et al. Nonparametric Bayesian Regression , 1998 .
[28] T. Poggio,et al. Networks and the best approximation property , 1990, Biological Cybernetics.
[29] Fredrik Tjärnström,et al. A Nonparametric Approach to Model Error Modeling , 2000 .
[30] Alessandro Chiuso,et al. Subspace identification using predictor estimation via Gaussian regression , 2008, 2008 47th IEEE Conference on Decision and Control.
[31] V. Burenkov. Sobolev spaces on domains , 1998 .
[32] Michel Gevers,et al. Explicit expression of the parameter bias in identification of Laguerre models from step responses , 2004, Syst. Control. Lett..
[33] Dimitri P. Bertsekas,et al. Nonlinear Programming , 1997 .
[34] D. Freedman. On the Bernstein-von Mises Theorem with Infinite Dimensional Parameters , 1999 .
[35] Graham C. Goodwin,et al. Non-stationary stochastic embedding for transfer function estimation , 1999, Autom..
[36] Håkan Hjalmarsson,et al. From experiment design to closed-loop control , 2005, Autom..
[37] R. Shah,et al. Least Squares Support Vector Machines , 2022 .
[38] Graham C. Goodwin,et al. Estimated Transfer Functions with Application to Model Order Selection , 1992 .
[39] Biao Huang,et al. System Identification , 2000, Control Theory for Physicists.
[40] Witold Pedrycz,et al. Bounding approaches to system identification , 1997 .
[41] Lennart Ljung,et al. Comparing different approaches to model error modeling in robust identification , 2002, Autom..
[42] H. Hjalmarsson,et al. Composite modeling of transfer functions , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.
[43] Lennart Ljung,et al. System Identification: Theory for the User , 1987 .
[44] Lennart Ljung,et al. Model Validation and Model Error Modeling , 1999 .
[45] L. Marton,et al. Advances in Electronics and Electron Physics , 1958 .
[46] F. Girosi,et al. Networks for approximation and learning , 1990, Proc. IEEE.
[47] Petros G. Voulgaris,et al. On optimal ℓ∞ to ℓ∞ filtering , 1995, Autom..
[48] Bernhard Schölkopf,et al. Bayesian Kernel Methods , 2002, Machine Learning Summer School.
[49] G. Wahba. Spline models for observational data , 1990 .
[50] S. Smale,et al. Learning Theory Estimates via Integral Operators and Their Approximations , 2007 .
[51] Milan Lukić,et al. Stochastic processes with sample paths in reproducing kernel Hilbert spaces , 2001 .
[52] G. Wahba. Practical Approximate Solutions to Linear Operator Equations When the Data are Noisy , 1977 .
[53] Christopher K. I. Williams,et al. Gaussian regression and optimal finite dimensional linear models , 1997 .
[54] M. Bertero. Linear Inverse and III-Posed Problems , 1989 .