Active and Adaptive Dive Planning for Dense Bathymetric Mapping

We examine the problem of planning dives for an Autonomous Underwater Vehicle (AUV) to generate a dense bathymetric map using sidescan sonar. The three key challenges in this scenario are (1) proper modeling of the local uncertainty of the 3D reconstruction, (2) efficient dive planning to reduce this uncertainty, and (3) determination of when to re-plan adaptively based on new information. To address these challenges, we propose using non-parametric Bayesian regression to model the expected accuracy of the map, which provides principled cost functions for planning subsequent dives. In addition, we propose an efficient greedy method to reduce this uncertainty, and we show that it achieves theoretically bounded performance given assumptions on the sensor model and the form of the uncertainty function. We present experiments on the propeller-driven YSI EcoMapper AUV equipped with a sidescan sonar in an inland lake. The experiments demonstrate the benefit of efficient dive planning, with our results providing performance gains of up to 83% versus standard lawnmower patterns.

[1]  Mary Hanson,et al.  Speeding things up: bicycle racing uses computers before reaching the starting line , 2001, IEEE Computer Graphics and Applications.

[2]  Shengyong Chen,et al.  Active vision in robotic systems: A survey of recent developments , 2011, Int. J. Robotics Res..

[3]  Andreas Krause,et al.  Efficient Informative Sensing using Multiple Robots , 2014, J. Artif. Intell. Res..

[4]  Abhimanyu Das,et al.  Algorithms for subset selection in linear regression , 2008, STOC.

[5]  Sw. Banerjee,et al.  Hierarchical Modeling and Analysis for Spatial Data , 2003 .

[6]  Marshall L. Fisher,et al.  The Lagrangian Relaxation Method for Solving Integer Programming Problems , 2004, Manag. Sci..

[7]  Carl E. Rasmussen,et al.  Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.

[8]  Geoffrey A. Hollinger,et al.  Active Classification: Theory and Application to Underwater Inspection , 2011, ISRR.

[9]  Martial Hebert,et al.  Building qualitative elevation maps from side scan sonar data for autonomous underwater navigation , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[10]  Subhashis Banerjee,et al.  Active recognition through next view planning: a survey , 2004, Pattern Recognit..

[11]  J. Vondrák,et al.  Approximating the Stochastic Knapsack Problem: The Benefit of Adaptivity , 2008 .

[12]  Barbara Anne am Ende 3D Mapping of Underwater Caves , 2001, IEEE Computer Graphics and Applications.

[13]  David P. Williams AUV-enabled adaptive underwater surveying for optimal data collection , 2012, Intell. Serv. Robotics.

[14]  Gaurav S. Sukhatme,et al.  Persistent ocean monitoring with underwater gliders: Adapting sampling resolution , 2011, J. Field Robotics.

[15]  David S. Wettergreen,et al.  Intelligent Maps for Autonomous Kilometer-Scale Science Survey , 2008 .

[16]  R. Bajcsy Active perception , 1988 .

[17]  Andreas Krause,et al.  Adaptive Submodularity: Theory and Applications in Active Learning and Stochastic Optimization , 2010, J. Artif. Intell. Res..

[18]  David Casasent,et al.  Feature Space Trajectory Methods for Active Computer Vision , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[19]  C. Ian Connolly,et al.  The determination of next best views , 1985, Proceedings. 1985 IEEE International Conference on Robotics and Automation.

[20]  Geoffrey A. Hollinger,et al.  Efficient Multi-robot Search for a Moving Target , 2009, Int. J. Robotics Res..

[21]  V Myers,et al.  A POMDP for multi-view target classification with an autonomous underwater vehicle , 2010, OCEANS 2010 MTS/IEEE SEATTLE.

[22]  Andreas Birk,et al.  Spectral registration of noisy sonar data for underwater 3D mapping , 2011, Auton. Robots.

[23]  David P. Williams On optimal AUV track-spacing for underwater mine detection , 2010, 2010 IEEE International Conference on Robotics and Automation.

[24]  R. Khan,et al.  Sequential Tests of Statistical Hypotheses. , 1972 .

[25]  Frank P. Ferrie,et al.  Autonomous exploration: driven by uncertainty , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[26]  C. Roman,et al.  Imaging Coral I: Imaging Coral Habitats with the SeaBED AUV , 2004 .

[27]  Alan Yuille,et al.  Active Vision , 2014, Computer Vision, A Reference Guide.

[28]  Hugh F. Durrant-Whyte,et al.  A Bayesian Approach to Optimal Sensor Placement , 1990, Int. J. Robotics Res..

[29]  David M. Lane,et al.  Multiresolution 3-D Reconstruction From Side-Scan Sonar Images , 2007, IEEE Transactions on Image Processing.

[30]  David Wettergreen,et al.  Real‐Time SLAM with Octree Evidence Grids for Exploration in Underwater Tunnels , 2007, J. Field Robotics.

[31]  Stefan B. Williams,et al.  Towards autonomous habitat classification using Gaussian Mixture Models , 2010, 2010 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[32]  Yiannis Aloimonos,et al.  Active vision , 2004, International Journal of Computer Vision.

[33]  Geoffrey A. Hollinger,et al.  Uncertainty-driven view planning for underwater inspection , 2012, 2012 IEEE International Conference on Robotics and Automation.

[34]  Andreas Krause,et al.  Near-Optimal Sensor Placements in Gaussian Processes: Theory, Efficient Algorithms and Empirical Studies , 2008, J. Mach. Learn. Res..

[35]  Hugh F. Durrant-Whyte,et al.  Gaussian Process modeling of large scale terrain , 2009, ICRA.

[36]  David P. Williams Bayesian Data Fusion of Multiview Synthetic Aperture Sonar Imagery for Seabed Classification , 2009, IEEE Transactions on Image Processing.