LLDM: Locally linear distance maps for robot motion planning: Extended Abstract

This paper presents a data structure that summarizes distances between configurations across a robot configuration space, using a binary space partition whose cells contain parameters used for a locally linear approximation of the distance function. Querying the data structure is extremely fast, particularly when compared to graph search required for querying Probabilistic Roadmaps, and memory requirements are promising. The paper explores the use of the data structure constructed for a single robot to provide a heuristic for challenging multi-robot motion planning problems. Potential applications also include the use of remote computation to analyze the space of robot motions, which then might be transmitted on-demand to robots with fewer computational resources.

[1]  Kostas E. Bekris,et al.  Asymptotically Near-Optimal Is Good Enough for Motion Planning , 2011, ISRR.

[2]  Nathan R. Sturtevant,et al.  Euclidean Heuristic Optimization , 2011, AAAI.

[3]  Mikkel Thorup,et al.  Approximate distance oracles , 2001, JACM.

[4]  Kostas E. Bekris,et al.  Computing spanners of asymptotically optimal probabilistic roadmaps , 2011, 2011 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[5]  Liam Roditty Fully Dynamic Geometric Spanners , 2007, SCG '07.

[6]  Jean-Claude Latombe,et al.  Nonholonomic multibody mobile robots: Controllability and motion planning in the presence of obstacles , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[7]  B. Faverjon,et al.  Probabilistic Roadmaps for Path Planning in High-Dimensional Con(cid:12)guration Spaces , 1996 .

[8]  Emilio Frazzoli,et al.  Sampling-based algorithms for optimal motion planning , 2011, Int. J. Robotics Res..

[9]  Kostas E. Bekris,et al.  Asymptotically Near-Optimal Planning With Probabilistic Roadmap Spanners , 2013, IEEE Transactions on Robotics.

[10]  Andrew W. Moore,et al.  Gradient descent approaches to neural-net-based solutions of the Hamilton-Jacobi-Bellman equation , 1999, IJCNN'99. International Joint Conference on Neural Networks. Proceedings (Cat. No.99CH36339).

[11]  Michiel H. M. Smid,et al.  Robust geometric spanners , 2012, SoCG '13.

[12]  Robin Deits,et al.  Computing Large Convex Regions of Obstacle-Free Space Through Semidefinite Programming , 2014, WAFR.

[13]  Mikkel Thorup,et al.  Roundtrip spanners and roundtrip routing in directed graphs , 2002, SODA '02.

[14]  Jian Pei,et al.  A Survey on Network Embedding , 2017, IEEE Transactions on Knowledge and Data Engineering.

[15]  Wouter Caarls,et al.  Distance metric approximation for state-space RRTs using supervised learning , 2014, 2014 IEEE/RSJ International Conference on Intelligent Robots and Systems.

[16]  Kostas E. Bekris,et al.  Towards small asymptotically near-optimal roadmaps , 2012, 2012 IEEE International Conference on Robotics and Automation.

[17]  Michael Elkin,et al.  Streaming and fully dynamic centralized algorithms for constructing and maintaining sparse spanners , 2007, TALG.

[18]  Edith Cohen Fast algorithms for constructing t-spanners and paths with stretch t , 1993, FOCS.

[19]  Surender Baswana,et al.  Streaming algorithm for graph spanners - single pass and constant processing time per edge , 2008, Inf. Process. Lett..

[20]  Soumojit Sarkar,et al.  Fully dynamic randomized algorithms for graph spanners , 2012, TALG.

[21]  Kostas E. Bekris,et al.  Sparse Roadmap Spanners , 2012, WAFR.

[22]  Jose Augusto Ramos Soares,et al.  Graph Spanners: a Survey , 1992 .

[23]  Ian R. Manchester,et al.  LQR-trees: Feedback Motion Planning via Sums-of-Squares Verification , 2010, Int. J. Robotics Res..

[24]  Devin J. Balkcom,et al.  A fast online spanner for roadmap construction , 2015, Int. J. Robotics Res..

[25]  Emilio Frazzoli,et al.  Efficient Collision Checking in Sampling-Based Motion Planning , 2012, WAFR.