Twenty‐five pitfalls in the analysis of diffusion MRI data

Obtaining reliable data and drawing meaningful and robust inferences from diffusion MRI can be challenging and is subject to many pitfalls. The process of quantifying diffusion indices and eventually comparing them between groups of subjects and/or correlating them with other parameters starts at the acquisition of the raw data, followed by a long pipeline of image processing steps. Each one of these steps is susceptible to sources of bias, which may not only limit the accuracy and precision, but can lead to substantial errors. This article provides a detailed review of the steps along the analysis pipeline and their associated pitfalls. These are grouped into 1 pre‐processing of data; 2 estimation of the tensor; 3 derivation of voxelwise quantitative parameters; 4 strategies for extracting quantitative parameters; and finally 5 intra‐subject and inter‐subject comparison, including region of interest, histogram, tract‐specific and voxel‐based analyses. The article covers important aspects of diffusion MRI analysis, such as motion correction, susceptibility and eddy current distortion correction, model fitting, region of interest placement, histogram and voxel‐based analysis. We have assembled 25 pitfalls (several previously unreported) into a single article, which should serve as a useful reference for those embarking on new diffusion MRI‐based studies, and as a check for those who may already be running studies but may have overlooked some important confounds. While some of these problems are well known to diffusion experts, they might not be to other researchers wishing to undertake a clinical study based on diffusion MRI. Copyright © 2010 John Wiley & Sons, Ltd.

[1]  P. Basser,et al.  Estimation of the effective self-diffusion tensor from the NMR spin echo. , 1994, Journal of magnetic resonance. Series B.

[2]  M E Bastin,et al.  Correction of eddy current-induced artefacts in diffusion tensor imaging using iterative cross-correlation. , 1999, Magnetic resonance imaging.

[3]  M. Chou,et al.  FLAIR diffusion-tensor MR tractography: comparison of fiber tracking with conventional imaging. , 2005, AJNR. American journal of neuroradiology.

[4]  J. Michael Fitzpatrick,et al.  A technique for accurate magnetic resonance imaging in the presence of field inhomogeneities , 1992, IEEE Trans. Medical Imaging.

[5]  Derek K. Jones,et al.  “Squashing peanuts and smashing pumpkins”: How noise distorts diffusion‐weighted MR data , 2004, Magnetic resonance in medicine.

[6]  Karl J. Friston,et al.  Voxel-Based Morphometry—The Methods , 2000, NeuroImage.

[7]  Eva H. Baker,et al.  Normal regional fractional anisotropy and apparent diffusion coefficient of the brain measured on a 3 T MR scanner , 2008, Neuroradiology.

[8]  William H. Press,et al.  The Art of Scientific Computing Second Edition , 1998 .

[9]  Denis Le Bihan,et al.  Imagerie de diffusion in-vivo par résonance magnétique nucléaire , 1985 .

[10]  P. Jezzard,et al.  Correction for geometric distortion in echo planar images from B0 field variations , 1995, Magnetic resonance in medicine.

[11]  H. Gudbjartsson,et al.  The rician distribution of noisy mri data , 1995, Magnetic resonance in medicine.

[12]  Carl-Fredrik Westin,et al.  Spatial normalization of diffusion tensor MRI using multiple channels , 2003, NeuroImage.

[13]  Derek K. Jones,et al.  A diffusion tensor imaging study of fasciculi in schizophrenia. , 2007, The American journal of psychiatry.

[14]  Stefan Skare,et al.  A Model-Based Method for Retrospective Correction of Geometric Distortions in Diffusion-Weighted EPI , 2002, NeuroImage.

[15]  Society of magnetic resonance in medicine , 1990 .

[16]  J. Duyn,et al.  Single‐shot diffusion MRI of human brain on a conventional clinical instrument , 1996, Magnetic resonance in medicine.

[17]  M. I. Smith,et al.  A study of rotationally invariant and symmetric indices of diffusion anisotropy. , 1999, Magnetic resonance imaging.

[18]  N. Intrator,et al.  Free water elimination and mapping from diffusion MRI , 2009, Magnetic resonance in medicine.

[19]  P. Reber,et al.  Correction of off resonance‐related distortion in echo‐planar imaging using EPI‐based field maps , 1998, Magnetic resonance in medicine.

[20]  P. Boesiger,et al.  SENSE: Sensitivity encoding for fast MRI , 1999, Magnetic resonance in medicine.

[21]  James R. Moore,et al.  Correction for distortion of echo‐planar images used to calculate the apparent diffusion coefficient , 1996, Magnetic resonance in medicine.

[22]  A G Sorensen,et al.  Highly diffusion‐sensitized MRI of brain: Dissociation of gray and white matter , 2001, Magnetic resonance in medicine.

[23]  Daniel Rueckert,et al.  Tract-based spatial statistics: Voxelwise analysis of multi-subject diffusion data , 2006, NeuroImage.

[24]  Christos Davatzikos,et al.  Why voxel-based morphometric analysis should be used with great caution when characterizing group differences , 2004, NeuroImage.

[25]  Thomas E. Nichols,et al.  Thresholding of Statistical Maps in Functional Neuroimaging Using the False Discovery Rate , 2002, NeuroImage.

[26]  James C. Gee,et al.  Spatial transformations of diffusion tensor magnetic resonance images , 2001, IEEE Transactions on Medical Imaging.

[27]  V. Wedeen,et al.  Reduction of eddy‐current‐induced distortion in diffusion MRI using a twice‐refocused spin echo , 2003, Magnetic resonance in medicine.

[28]  A. Snyder,et al.  Quantitative diffusion-tensor anisotropy brain MR imaging: normative human data and anatomic analysis. , 1999, Radiology.

[29]  Carlo Pierpaoli,et al.  PASTA: Pointwise assessment of streamline tractography attributes , 2005, Magnetic resonance in medicine.

[30]  Derek K. Jones,et al.  Determining and visualizing uncertainty in estimates of fiber orientation from diffusion tensor MRI , 2003, Magnetic resonance in medicine.

[31]  P. Grenier,et al.  MR imaging of intravoxel incoherent motions: application to diffusion and perfusion in neurologic disorders. , 1986, Radiology.

[32]  R. Bowtell,et al.  Correction of spatial distortion in EPI due to inhomogeneous static magnetic fields using the reversed gradient method , 2004, Journal of magnetic resonance imaging : JMRI.

[33]  R. Dougherty,et al.  Cross‐subject comparison of principal diffusion direction maps , 2005, Magnetic resonance in medicine.

[34]  S. Heiland,et al.  Noise correction for the exact determination of apparent diffusion coefficients at low SNR , 2001, Magnetic resonance in medicine.

[35]  P. Basser,et al.  MR diffusion tensor spectroscopy and imaging. , 1994, Biophysical journal.

[36]  Brandon Whitcher,et al.  Statistical group comparison of diffusion tensors via multivariate hypothesis testing , 2007, Magnetic resonance in medicine.

[37]  Karl J. Friston,et al.  Why Voxel-Based Morphometry Should Be Used , 2001, NeuroImage.

[38]  Geoff J M Parker,et al.  Distortion correction for diffusion‐weighted MRI tractography and fMRI in the temporal lobes , 2010, Human brain mapping.

[39]  W. Manning,et al.  Simultaneous acquisition of spatial harmonics (SMASH): Fast imaging with radiofrequency coil arrays , 1997, Magnetic resonance in medicine.

[40]  Thomas E. Nichols,et al.  Acquisition and voxelwise analysis of multi-subject diffusion data with Tract-Based Spatial Statistics , 2007, Nature Protocols.

[41]  P. Basser,et al.  Toward a quantitative assessment of diffusion anisotropy , 1996, Magnetic resonance in medicine.

[42]  Alan C. Evans,et al.  A Three-Dimensional Statistical Analysis for CBF Activation Studies in Human Brain , 1992, Journal of cerebral blood flow and metabolism : official journal of the International Society of Cerebral Blood Flow and Metabolism.

[43]  Hidenao Fukuyama,et al.  Anterior and posterior cingulum abnormalities and their association with psychopathology in schizophrenia: A diffusion tensor imaging study , 2007, Schizophrenia Research.

[44]  M. Horsfield,et al.  Optimal strategies for measuring diffusion in anisotropic systems by magnetic resonance imaging , 1999, Magnetic resonance in medicine.

[45]  A. Alexander,et al.  Does fractional anisotropy have better noise immunity characteristics than relative anisotropy in diffusion tensor MRI? An analytical approach , 2004, Magnetic resonance in medicine.

[46]  Derek K. Jones,et al.  Age effects on diffusion tensor magnetic resonance imaging tractography measures of frontal cortex connections in schizophrenia , 2006, Human brain mapping.

[47]  H. Lilliefors On the Kolmogorov-Smirnov Test for Normality with Mean and Variance Unknown , 1967 .

[48]  Carl-Fredrik Westin,et al.  Deformable registration of DT-MRI data based on transformation invariant tensor characteristics , 2002, Proceedings IEEE International Symposium on Biomedical Imaging.

[49]  Derek K. Jones Studying connections in the living human brain with diffusion MRI , 2008, Cortex.

[50]  Derek K. Jones,et al.  The effect of filter size on VBM analyses of DT-MRI data , 2005, NeuroImage.

[51]  G. Barker,et al.  Diffusion tensor imaging of early relapsing-remitting multiple sclerosis with histogram analysis using automated segmentation and brain volume correction , 2004, Multiple sclerosis.

[52]  M A Horsfield,et al.  Mapping eddy current induced fields for the correction of diffusion-weighted echo planar images. , 1999, Magnetic resonance imaging.

[53]  Roland Bammer,et al.  Diffusion tensor imaging using single‐shot SENSE‐EPI , 2002, Magnetic resonance in medicine.

[54]  Fred L. Bookstein,et al.  “Voxel-Based Morphometry” Should Not Be Used with Imperfectly Registered Images , 2001, NeuroImage.

[55]  Faiza Admiraal-Behloul,et al.  Reproducibility of brain ADC histograms , 2004, European Radiology.

[56]  Luis Concha,et al.  Diffusion tensor imaging tractography and reliability analysis for limbic and paralimbic white matter tracts , 2008, Psychiatry Research: Neuroimaging.

[57]  Osamu Abe,et al.  Tract-specific analysis of white matter pathways in healthy subjects: a pilot study using diffusion tensor MRI , 2009, Neuroradiology.

[58]  Karl J. Friston,et al.  A unified statistical approach for determining significant signals in images of cerebral activation , 1996, Human brain mapping.

[59]  Derek K. Jones,et al.  The effect of gradient sampling schemes on measures derived from diffusion tensor MRI: A Monte Carlo study † , 2004, Magnetic resonance in medicine.

[60]  Alexander Leemans,et al.  The B‐matrix must be rotated when correcting for subject motion in DTI data , 2009, Magnetic resonance in medicine.

[61]  Robin M Heidemann,et al.  Generalized autocalibrating partially parallel acquisitions (GRAPPA) , 2002, Magnetic resonance in medicine.

[62]  Carl-Fredrik Westin,et al.  Uncinate fasciculus abnormalities in recent onset schizophrenia and affective psychosis: A diffusion tensor imaging study , 2009, Schizophrenia Research.

[63]  Thomas E. Nichols,et al.  Nonparametric permutation tests for functional neuroimaging: A primer with examples , 2002, Human brain mapping.

[64]  L. Concha,et al.  Diffusion tensor tractography of the limbic system. , 2005, AJNR. American journal of neuroradiology.

[65]  P. Basser,et al.  Diffusion tensor MR imaging of the human brain. , 1996, Radiology.

[66]  Sm Smith,et al.  What happens when nine different groups analyze the same DT-MRI data set using voxel-based methods? , 2007 .

[67]  Christian Beaulieu,et al.  Diffusion anisotropy in subcortical white matter and cortical gray matter: Changes with aging and the role of CSF‐suppression , 2004, Journal of magnetic resonance imaging : JMRI.

[68]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[69]  P. Basser,et al.  Comprehensive approach for correction of motion and distortion in diffusion‐weighted MRI , 2004, Magnetic resonance in medicine.

[70]  Sukhwinder S. Shergill,et al.  Tract-specific anisotropy measurements in diffusion tensor imaging , 2006, Psychiatry Research: Neuroimaging.

[71]  Karl J. Friston,et al.  Statistical parametric maps in functional imaging: A general linear approach , 1994 .