Analysis of the expected density of internal equilibria in random evolutionary multi-player multi-strategy games

In this paper, we study the distribution and behaviour of internal equilibria in a d-player n-strategy random evolutionary game where the game payoff matrix is generated from normal distributions. The study of this paper reveals and exploits interesting connections between evolutionary game theory and random polynomial theory. The main contributions of the paper are some qualitative and quantitative results on the expected density, fn,dfn,d, and the expected number, E(n, d), of (stable) internal equilibria. Firstly, we show that in multi-player two-strategy games, they behave asymptotically as d1d-1 as d is sufficiently large. Secondly, we prove that they are monotone functions of d. We also make a conjecture for games with more than two strategies. Thirdly, we provide numerical simulations for our analytical results and to support the conjecture. As consequences of our analysis, some qualitative and quantitative results on the distribution of zeros of a random Bernstein polynomial are also obtained.

[1]  W. Hamilton,et al.  The Evolution of Cooperation , 1984 .

[2]  C. Hauert,et al.  Replicator dynamics for optional public good games. , 2002, Journal of theoretical biology.

[3]  Paul G. Spirakis,et al.  On the support size of stable strategies in random games , 2007, Theor. Comput. Sci..

[4]  Sergiu Hart,et al.  Evolutionarily Stable Strategies of Random Games, and the Vertices of Random Polygons , 2008, 0801.3353.

[5]  M. Broom,et al.  Game-Theoretical Models in Biology , 2013 .

[6]  Eric Kostlan,et al.  On the expected number of real roots of a system of random polynomial equations , 2002 .

[7]  Andrew McLennan,et al.  Asymptotic expected number of Nash equilibria of two-player normal form games , 2005, Games Econ. Behav..

[8]  John Heading,et al.  Mathematical methods in science and engineering , 1970 .

[9]  P. Taylor,et al.  Evolutionarily Stable Strategies and Game Dynamics , 1978 .

[10]  J M Smith,et al.  Evolution and the theory of games , 1976 .

[11]  Ş. Selçuk Bayin,et al.  Mathematical Methods in Science and Engineering: Bayin/Mathematical , 2006 .

[12]  S Karlin,et al.  The number of stable equilibria for the classical one-locus multiallele selection model , 1980, Journal of mathematical biology.

[13]  Mark Broom,et al.  Sequential methods for generating patterns of ESS's , 1994 .

[14]  G. Hardin,et al.  The Tragedy of the Commons , 1968, Green Planet Blues.

[15]  Mark Broom,et al.  On the number of local maxima of a constrained quadratic form , 1993, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[16]  Chaitanya S. Gokhale,et al.  On equilibrium properties of evolutionary multi-player games with random payoff matrices. , 2012, Theoretical population biology.

[17]  Emmanuel Kowalski,et al.  Bernstein Polynomials and Brownian Motion , 2006, Am. Math. Mon..

[18]  Jean-Pierre Dedieu,et al.  A note about the average number of real roots of a Bernstein polynomial system , 2009, J. Complex..

[19]  Manh Hong Duong,et al.  On the Expected Number of Equilibria in a Multi-player Multi-strategy Evolutionary Game , 2014, Dynamic Games and Applications.

[20]  F. C. Santos,et al.  Social diversity promotes the emergence of cooperation in public goods games , 2008, Nature.

[21]  E. C. Zeeman,et al.  Population dynamics from game theory , 1980 .

[22]  Attila Szolnoki,et al.  Coevolutionary Games - A Mini Review , 2009, Biosyst..

[23]  A. McLennan The Expected Number of Nash Equilibria of a Normal Form Game , 2005 .

[24]  Ronald L. Graham,et al.  Concrete mathematics - a foundation for computer science , 1991 .

[25]  Lee Altenberg,et al.  Proof of the Feldman-Karlin conjecture on the maximum number of equilibria in an evolutionary system. , 2009, Theoretical population biology.

[26]  R. Axelrod,et al.  Evolutionary Dynamics , 2004 .

[27]  Josef Hofbauer,et al.  Evolutionary Games and Population Dynamics , 1998 .

[28]  Tom Lenaerts,et al.  Avoiding or restricting defectors in public goods games? , 2015, Journal of The Royal Society Interface.

[29]  Chris Cannings,et al.  On the number of stable equilibria in a one-locus, multi-allelic system , 1988 .

[30]  J. M. Smith,et al.  The Logic of Animal Conflict , 1973, Nature.

[31]  F. C. Santos,et al.  Evolutionary dynamics of collective action in N-person stag hunt dilemmas , 2009, Proceedings of the Royal Society B: Biological Sciences.

[32]  C Cannings,et al.  Multi-player matrix games. , 1997, Bulletin of mathematical biology.

[33]  C Cannings,et al.  Patterns of ESS's. I. , 1988, Journal of theoretical biology.

[34]  V. Vu,et al.  On the number of real roots of random polynomials , 2014, 1402.4628.

[35]  John Haigh THE DISTRIBUTION OF EVOLUTIONARILY STABLE STRATEGIES , 1988 .

[36]  John Haigh,et al.  How large is the support of an ESS? , 1989, Journal of Applied Probability.

[37]  P. Turán,et al.  On the zeros of the polynomials of Legendre , 1950 .

[38]  E. Kostlan On the Distribution of Roots of Random Polynomials , 1993 .

[39]  Terence Tao,et al.  Local Universality of Zeroes of Random Polynomials , 2013, 1307.4357.

[40]  Chaitanya S. Gokhale,et al.  Evolutionary Multiplayer Games , 2014, Dynamic Games and Applications.

[41]  George Polya,et al.  On the Roots of Certain Algebraic Equations , 1932 .

[42]  E. Constantinescu ON THE INEQUALITY OF P. TURÁN FOR LEGENDRE POLYNOMIALS , 2005 .

[43]  Alan Edelman,et al.  How many zeros of a random polynomial are real , 1995 .

[44]  Niels Henrik Abel,et al.  Mémoire sur les equations algébriques, où l'on démontre l'impossibilité de la résolution de l'équation générale du cinquième degré , 2012 .

[45]  Chaitanya S. Gokhale,et al.  Evolutionary games in the multiverse , 2010, Proceedings of the National Academy of Sciences.

[46]  Sonia Petrone Random Bernstein Polynomials , 1999 .