Lowering thermal conductivity in thermoelectric Ti2−xNiCoSnSb half Heusler high entropy alloys

[1]  Fangfang Xu,et al.  Thermal-inert and ohmic-contact interface for high performance half-Heusler based thermoelectric generator , 2022, Nature communications.

[2]  Y. Miyazaki,et al.  Low Lattice Thermal Conductivity in a Wider Temperature Range for Biphasic-Quaternary (Ti,V)CoSb Half-Heusler Alloys. , 2022, ACS applied materials & interfaces.

[3]  B. S. Murty,et al.  Thermoelectric properties of a high entropy half-Heusler alloy processed by a fast powder metallurgy route , 2022, Journal of Alloys and Compounds.

[4]  Huijun Kang,et al.  Enhancement in thermoelectric properties of ZrNiSn-based alloys by Ta doping and Hf substitution , 2022, Acta Materialia.

[5]  Z. Ren,et al.  Crystallographic design for half-Heuslers with low lattice thermal conductivity , 2022, Materials Today Physics.

[6]  S. Yi,et al.  Effects of Annealing on the Microstructure and Thermoelectric Properties of Half-Heusler MNiSn (M = Ti, Zr, Hf) , 2022, Journal of Electronic Materials.

[7]  H. Hassan,et al.  Comprehensive review in waste heat recovery in different thermal energy-consuming processes using thermoelectric generators for electrical power generation , 2022, Process Safety and Environmental Protection.

[8]  Xiaolei Shi,et al.  Thermoelectrics for medical applications: Progress, Challenges, and Perspectives , 2022, Chemical Engineering Journal.

[9]  J. Bos,et al.  Synthesis and thermoelectric properties of high-entropy half-Heusler MFe1−xCoxSb (M = equimolar Ti, Zr, Hf, V, Nb, Ta) , 2022, Journal of Alloys and Compounds.

[10]  H. Al-Tahaineh,et al.  A hybrid TEG/evacuated tube solar collectors for electric power generation and space heating , 2022, Journal of Engineering and Applied Science.

[11]  A. Lavine,et al.  Total solar spectrum energy converter with integrated photovoltaics, thermoelectrics, and thermal energy storage: System modeling and design , 2021, International Journal of Energy Research.

[12]  J. Bos,et al.  Advances in half-Heusler alloys for thermoelectric power generation , 2021, Materials Advances.

[13]  U. Varadaraju,et al.  Effect of Processing Routes on the Microstructure and Thermoelectric Properties of Half-Heusler TiFe0.5Ni0.5Sb1−xSnx (x = 0, 0.05, 0.1, 0.2) Alloys , 2021, Journal of Materials Engineering and Performance.

[14]  Jinfeng Dong,et al.  Thermoelectric materials and transport physics , 2021, Materials Today Physics.

[15]  Z. Ren,et al.  Enhanced thermoelectric performance of nominal 19-electron half-Heusler compound NbCoSb with intrinsic Nb and Sb vacancies , 2021 .

[16]  K. Nielsch,et al.  Reduced Lattice Thermal Conductivity for Half-Heusler ZrNiSn through Cryogenic Mechanical Alloying. , 2021, ACS applied materials & interfaces.

[17]  P. Liaw,et al.  Effects of aluminum content on thermoelectric performance of AlxCoCrFeNi high-entropy alloys , 2021 .

[18]  Serdar M. Gultekin,et al.  Thermoelectric Films for Electricity Generation , 2021 .

[19]  Huijun Kang,et al.  Top-down method to fabricate TiNi1+xSn half-Heusler alloy with high thermoelectric performance , 2021 .

[20]  Xiaofang Li,et al.  Enhanced thermoelectric performance in Ti(Fe, Co, Ni)Sb pseudo-ternary Half-Heusler alloys , 2021, Journal of Materiomics.

[21]  Robert Freer,et al.  Realising the potential of thermoelectric technology: a Roadmap , 2020, Journal of Materials Chemistry C.

[22]  Davide Beretta,et al.  Thermoelectrics: From history, a window to the future , 2019, Materials Science and Engineering: R: Reports.

[23]  J. Bos,et al.  Low thermal conductivity and promising thermoelectric performance in AxCoSb (A = V, Nb or Ta) half-Heuslers with inherent vacancies , 2019, Journal of Materials Chemistry C.

[24]  S. Poon Half Heusler compounds: promising materials for mid-to-high temperature thermoelectric conversion , 2019, Journal of Physics D: Applied Physics.

[25]  B. S. Murty,et al.  Ti2NiCoSnSb - a new half-Heusler type high-entropy alloy showing simultaneous increase in Seebeck coefficient and electrical conductivity for thermoelectric applications , 2019, Scientific Reports.

[26]  P. Jund,et al.  Synthesis of Pure NiTiSn by Mechanical Alloying: An Investigation of the Optimal Experimental Conditions Supported by First Principles Calculations , 2018, Metals.

[27]  R. Malekfar,et al.  Enhanced thermoelectric properties of hydrothermally synthesized Bi0.88−xZnxSb0.12 nanoalloys below the semiconductor–semimetal transition temperature , 2018, RSC advances.

[28]  Mit H. Naik,et al.  Electronic and Thermoelectric Properties of Transition Metal Substituted Tetrahedrites , 2018 .

[29]  Jim Buckman,et al.  Impact of Nb vacancies and p-type doping of the NbCoSn-NbCoSb half-Heusler thermoelectrics. , 2018, Physical chemistry chemical physics : PCCP.

[30]  G. J. Snyder,et al.  Enhanced Thermoelectric Performance in 18‐Electron Nb0.8CoSb Half‐Heusler Compound with Intrinsic Nb Vacancies , 2018 .

[31]  B. S. Murty,et al.  Synthesis of nanocrystalline half-Heusler TiNiSn by mechanically activated annealing , 2017 .

[32]  E. Çeli̇k,et al.  Production, characterization and optimization of thermoelectric module and investigation of doping effects on thermoelectric performances , 2017, Journal of Materials Science: Materials in Electronics.

[33]  R. Saidur,et al.  A review on nanostructures of high-temperature thermoelectric materials for waste heat recovery , 2016 .

[34]  Boris Kozinsky,et al.  Enhanced thermoelectric properties of n-type NbCoSn half-Heusler by improving phase purity , 2016 .

[35]  E. Bauer,et al.  On the constitution and thermodynamic modelling of the system Zr-Ni-Sn , 2015 .

[36]  G. Stucky,et al.  Phase stability and property evolution of biphasic Ti–Ni–Sn alloys for use in thermoelectric applications , 2014 .

[37]  David L. Olmsted,et al.  Efficient stochastic generation of special quasirandom structures , 2013 .

[38]  Kristin A. Persson,et al.  Commentary: The Materials Project: A materials genome approach to accelerating materials innovation , 2013 .

[39]  Xianli Su,et al.  Simultaneous large enhancements in thermopower and electrical conductivity of bulk nanostructured half-Heusler alloys. , 2011, Journal of the American Chemical Society.

[40]  R. Asahi,et al.  Improvement of thermoelectric properties for half-Heusler TiNiSn by interstitial Ni defects , 2011 .

[41]  C. Felser,et al.  Phase separation in the quaternary Heusler compound CoTi(1−x)MnxSb – A reduction in the thermal conductivity for thermoelectric applications , 2010 .

[42]  M. Kanatzidis,et al.  New and old concepts in thermoelectric materials. , 2009, Angewandte Chemie.

[43]  Xiangyang Huang,et al.  The high temperature thermoelectric performances of Zr0.5Hf0.5Ni0.8Pd0.2Sn0.99Sb0.01 alloy with nanophase inclusions , 2006 .

[44]  S. Yamanaka,et al.  Thermoelectric properties of Sn-doped TiCoSb half-Heusler compounds , 2006 .

[45]  H. Goldsmid,et al.  Estimation of the thermal band gap of a semiconductor from seebeck measurements , 1999 .

[46]  M. V. Vedernikov,et al.  A.F. Ioffe and origin of modern semiconductor thermoelectric energy conversion , 1998, Seventeenth International Conference on Thermoelectrics. Proceedings ICT98 (Cat. No.98TH8365).

[47]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[48]  W. Kohn,et al.  Self-Consistent Equations Including Exchange and Correlation Effects , 1965 .

[49]  M. Hoch,et al.  Thermal Conductivity of TiC , 1963 .