Structural basis for the inhibition of the eukaryotic ribosome

[1]  V. G. Panse,et al.  A new system for naming ribosomal proteins. , 2014, Current opinion in structural biology.

[2]  Shaoguang Li,et al.  Omacetaxine mepesuccinate in the treatment of intractable chronic myeloid leukemia , 2014, OncoTargets and therapy.

[3]  H. Boukari,et al.  4′-O-substitutions determine selectivity of aminoglycoside antibiotics , 2014, Nature Communications.

[4]  Daniel N. Wilson Ribosome-targeting antibiotics and mechanisms of bacterial resistance , 2013, Nature Reviews Microbiology.

[5]  J. Schacht,et al.  Designer Aminoglycosides That Selectively Inhibit Cytoplasmic Rather than Mitochondrial Ribosomes Show Decreased Ototoxicity , 2013, The Journal of Biological Chemistry.

[6]  Aravind Subramanian,et al.  Tight Coordination of Protein Translation and HSF1 Activation Supports the Anabolic Malignant State , 2013, Science.

[7]  A. Korostelev,et al.  Blasticidin S inhibits translation by trapping deformed tRNA on the ribosome , 2013, Proceedings of the National Academy of Sciences.

[8]  J. Darnell,et al.  The translation of translational control by FMRP: therapeutic targets for FXS , 2013, Nature Neuroscience.

[9]  M. Cooper,et al.  Aminoglycoside antibiotics in the 21st century. , 2013, ACS chemical biology.

[10]  T. Steitz,et al.  Elements of ribosomal drug resistance and specificity. , 2012, Current opinion in structural biology.

[11]  M. Yusupov,et al.  Crystal structure of the 80S yeast ribosome. , 2012, Current opinion in structural biology.

[12]  O. Namy,et al.  Sense from nonsense: therapies for premature stop codon diseases. , 2012, Trends in molecular medicine.

[13]  B. Shen,et al.  Global mapping of translation initiation sites in mammalian cells at single-nucleotide resolution , 2012, Proceedings of the National Academy of Sciences.

[14]  M. Yusupov,et al.  One core, two shells: bacterial and eukaryotic ribosomes , 2012, Nature Structural &Molecular Biology.

[15]  E. Westhof,et al.  A new understanding of the decoding principle on the ribosome , 2012, Nature.

[16]  Meitian Wang,et al.  Optimal fine ϕ-slicing for single-photon-counting pixel detectors , 2011, Acta crystallographica. Section D, Biological crystallography.

[17]  Sergey Melnikov,et al.  The Structure of the Eukaryotic Ribosome at 3.0 Å Resolution , 2011, Science.

[18]  N. Ban,et al.  Crystal Structure of the Eukaryotic 60S Ribosomal Subunit in Complex with Initiation Factor 6 , 2011, Science.

[19]  Nicholas T. Ingolia,et al.  Ribosome Profiling of Mouse Embryonic Stem Cells Reveals the Complexity and Dynamics of Mammalian Proteomes , 2011, Cell.

[20]  Marcus Mueller,et al.  Optimal fine ϕ slicing for single photon counting pixel detectors , 2011 .

[21]  N. A. Stover,et al.  Trichothecenes: From Simple to Complex Mycotoxins , 2011, Toxins.

[22]  S. Hobbie,et al.  Genetic Reconstruction of Protozoan rRNA Decoding Sites Provides a Rationale for Paromomycin Activity against Leishmania and Trypanosoma , 2011, PLoS Neglected Tropical Diseases.

[23]  T. Mahmud,et al.  Biosynthetic studies and genetic engineering of pactamycin analogs with improved selectivity toward malarial parasites. , 2011, Chemistry & biology.

[24]  J. Nakayama,et al.  Methylation of Ribosomal Protein L42 Regulates Ribosomal Function and Stress-adapted Cell Growth* , 2010, The Journal of Biological Chemistry.

[25]  P. Emsley,et al.  Features and development of Coot , 2010, Acta crystallographica. Section D, Biological crystallography.

[26]  Tilman Schneider-Poetsch,et al.  Inhibition of Eukaryotic Translation Elongation by Cycloheximide and Lactimidomycin , 2010, Nature chemical biology.

[27]  Randy J. Read,et al.  Acta Crystallographica Section D Biological , 2003 .

[28]  T. Steitz,et al.  Structures of Triacetyloleandomycin and Mycalamide A Bind to the Large Ribosomal Subunit of Haloarcula marismortui , 2009, Antimicrobial Agents and Chemotherapy.

[29]  T. Steitz,et al.  U2504 determines the species specificity of the A-site cleft antibiotics: the structures of tiamulin, homoharringtonine, and bruceantin bound to the ribosome. , 2009, Journal of molecular biology.

[30]  Nicholas T. Ingolia,et al.  Genome-Wide Analysis in Vivo of Translation with Nucleotide Resolution Using Ribosome Profiling , 2009, Science.

[31]  S. Van slambrouck,et al.  Biological Evaluation of Structurally Diverse Amaryllidaceae Alkaloids and their Synthetic Derivatives: Discovery of Novel Leads for Anticancer Drug Design , 2009, Planta medica.

[32]  A. Hinnebusch,et al.  Regulation of Translation Initiation in Eukaryotes: Mechanisms and Biological Targets , 2009, Cell.

[33]  G. Adam,et al.  Molecular mechanisms of deoxynivalenol resistance in the yeastSaccharomyces cerevisiae , 2001, Mycotoxin Research.

[34]  E. Duffy,et al.  Design at the atomic level: generation of novel hybrid biaryloxazolidinones as promising new antibiotics. , 2008, Bioorganic & medicinal chemistry letters.

[35]  Hua Fan-Minogue,et al.  Eukaryotic ribosomal RNA determinants of aminoglycoside resistance and their role in translational fidelity. , 2007, RNA.

[36]  Yanli Wang,et al.  PubChem: Integrated Platform of Small Molecules and Biological Activities , 2008 .

[37]  Jie Luo,et al.  Retrieval of Crystallographically-Derived Molecular Geometry Information , 2004, J. Chem. Inf. Model..

[38]  J. Pelletier,et al.  Eukaryotic protein synthesis inhibitors identified by comparison of cytotoxicity profiles. , 2004, RNA.

[39]  Daniel N. Wilson,et al.  Dissecting the ribosomal inhibition mechanisms of edeine and pactamycin: the universally conserved residues G693 and C795 regulate P-site RNA binding. , 2004, Molecular cell.

[40]  K. Schappert,et al.  Isolation and characterization of Saccharomyces cerevisiae mutants resistant to T-2 toxin , 1988, Current Genetics.

[41]  A. Jiménez,et al.  Genetics and biochemistry of cryptopleurine resistance in the yeast Saccharomyces cerevisiae , 1977, Molecular and General Genetics MGG.

[42]  Thomas A Steitz,et al.  Structures of five antibiotics bound at the peptidyl transferase center of the large ribosomal subunit. , 2003, Journal of molecular biology.

[43]  V. Ramakrishnan,et al.  Selection of tRNA by the Ribosome Requires a Transition from an Open to a Closed Form , 2002, Cell.

[44]  Wayne A. Decatur,et al.  rRNA modifications and ribosome function. , 2002, Trends in biochemical sciences.

[45]  Nan Yu,et al.  The Comparative RNA Web (CRW) Site: an online database of comparative sequence and structure information for ribosomal, intron, and other RNAs , 2002, BMC Bioinformatics.

[46]  A Yonath,et al.  Crystal structures of complexes of the small ribosomal subunit with tetracycline, edeine and IF3 , 2001, The EMBO journal.

[47]  V. Ramakrishnan,et al.  The Structural Basis for the Action of the Antibiotics Tetracycline, Pactamycin, and Hygromycin B on the 30S Ribosomal Subunit , 2000, Cell.

[48]  D. Bedwell,et al.  Aminoglycoside antibiotics mediate context-dependent suppression of termination codons in a mammalian translation system. , 2000, RNA.

[49]  J. Puglisi,et al.  Basis for prokaryotic specificity of action of aminoglycoside antibiotics , 1999, The EMBO journal.

[50]  P. Lefebvre,et al.  The CRY1 gene in Chlamydomonas reinhardtii: structure and use as a dominant selectable marker for nuclear transformation , 1994, Molecular and cellular biology.

[51]  A. Paulovich,et al.  Molecular genetics of cryptopleurine resistance in Saccharomyces cerevisiae: expression of a ribosomal protein gene family. , 1993, Genetics.

[52]  J. Davies,et al.  Natural cycloheximide resistance in yeast. The role of ribosomal protein L41. , 1993, European journal of biochemistry.

[53]  S. Kawai,et al.  Drastic alteration of cycloheximide sensitivity by substitution of one amino acid in the L41 ribosomal protein of yeasts , 1992, Journal of bacteriology.

[54]  G. Karpova,et al.  Alkaloid homoharringtonine inhibits polypeptide chain elongation on human ribosomes on the step of peptide bond formation , 1989, FEBS letters.

[55]  J. Middlebrook,et al.  Binding of T-2 toxin to eukaryotic cell ribosomes. , 1989, Biochemical pharmacology.

[56]  K. Ehrlich,et al.  Protein synthesis inhibition by 8-oxo-12,13-epoxytrichothecenes. , 1987, Biochimica et biophysica acta.

[57]  W. Wintermeyer,et al.  Affinities of tRNA binding sites of ribosomes from Escherichia coli. , 1986, Biochemistry.

[58]  J. Wilhelm,et al.  Mechanisms of action of aminoglycoside antibiotics in eucaryotic protein synthesis , 1984, Antimicrobial Agents and Chemotherapy.

[59]  M. Kukhanova,et al.  Peptidyltransferase center of ribosomes , 1983, FEBS letters.

[60]  J. Friesen,et al.  Nucleotide sequence of the tcml gene (ribosomal protein L3) of Saccharomyces cerevisiae , 1983, Journal of bacteriology.

[61]  J. Warner,et al.  Cycloheximide resistance in yeast: the gene and its protein. , 1983, Nucleic acids research.

[62]  A. Jimenez,et al.  Quantitation of the specific interaction of [14a-3H]cryptopleurine with 80S and 40S ribosomal species from the yeast Saccharomyces cerevisiae. , 1982, Biochemistry.

[63]  E. Cundliffe,et al.  Ribosomal resistance to the 12,13-epoxytrichothecene antibiotics in the producing organism Myrothecium verrucaria. , 1980, The Biochemical journal.

[64]  W. Wintermeyer,et al.  Fluorescent derivatives of yeast tRNAPhe. , 1979, European journal of biochemistry.

[65]  D. Vazquez Inhibitors of Protein Biosynthesis , 1979, Molecular Biology Biochemistry and Biophysics.

[66]  A. Shatkin,et al.  Migration of 40 S ribosomal subunits on messenger RNA in the presence of edeine. , 1978, The Journal of biological chemistry.

[67]  Luis Carrasco,et al.  Inhibition, by selected antibiotics, of protein synthesis in cells growing in tissue cultures. , 1978, The Journal of antibiotics.

[68]  D. Vazquez,et al.  Binding of [3H]narciclasine to eukaryotic ribosomes. A study on a structure-activity relationship. , 1978, Biochimica et biophysica acta.

[69]  M. Fresno,et al.  Inhibition of translation in eukaryotic systems by harringtonine. , 1977, European journal of biochemistry.

[70]  K. Bucher,et al.  Cryptopleurine--an inhibitor of translocation. , 1976, Biochemistry.

[71]  A. Santos,et al.  Inhibitors of protein synthesis in eukarytic cells. Comparative effects of some amaryllidaceae alkaloids. , 1976, Biochimica et biophysica acta.

[72]  A. Jimenez,et al.  Location of resistance to the alkaloid narciclasine in the 60S ribosomal subunit , 1975, FEBS letters.

[73]  A. Jimenez,et al.  Simultaneous ribosomal resistance to trichodermin and anisomycin in Saccharomyces cerevisiae mutants. , 1975, Biochimica et biophysica acta.

[74]  Luis Carrasco,et al.  Narciclasine: an antitumour alkaloid which blocks peptide bond formation by eukaryotic ribosomes , 1975, FEBS letters.

[75]  J. Davies,et al.  Mechanism of inhibition of eukaryotic protein synthesis by trichothecene fungal toxins. , 1974, Proceedings of the National Academy of Sciences of the United States of America.

[76]  A. Grollman Inhibitors of protein biosynthesis. II. Mode of action of anisomycin. , 1967, The Journal of biological chemistry.

[77]  H. Yamaguchi,et al.  Inhibition of protein synthesis by blasticidin S. II. Studies on the site of action in E. coli polypeptide synthesizing systems. , 1966, Journal of biochemistry.

[78]  H. Yamaguchi,et al.  Inhibition of protein synthesis by blasticidin S. I. Studies with cell-free systems from bacterial and mammalian cells. , 1965, Journal of biochemistry.