Developmental dynamics of lncRNAs across mammalian organs and species

Although many long noncoding RNAs (lncRNAs) have been identified in human and other mammalian genomes, there has been limited systematic functional characterization of these elements. In particular, the contribution of lncRNAs to organ development remains largely unexplored. Here we analyse the expression patterns of lncRNAs across developmental time points in seven major organs, from early organogenesis to adulthood, in seven species (human, rhesus macaque, mouse, rat, rabbit, opossum and chicken). Our analyses identified approximately 15,000 to 35,000 candidate lncRNAs in each species, most of which show species specificity. We characterized the expression patterns of lncRNAs across developmental stages, and found many with dynamic expression patterns across time that show signatures of enrichment for functionality. During development, there is a transition from broadly expressed and conserved lncRNAs towards an increasing number of lineage- and organ-specific lncRNAs. Our study provides a resource of candidate lncRNAs and their patterns of expression and evolutionary conservation across mammalian organ development.A transcriptome dataset from seven organs and seven mammalian species throughout development is used to analyse the expression of long noncoding RNAs in tissues within and between species, and at different stages of organ development.

[1]  Laurence Ettwiller,et al.  Large-scale analysis of the regulatory architecture of the mouse genome with a transposon-associated sensor , 2011, Nature Genetics.

[2]  S. Dhanasekaran,et al.  The landscape of long noncoding RNAs in the human transcriptome , 2015, Nature Genetics.

[3]  Miki Ebisuya,et al.  Ripples from neighbouring transcription , 2008, Nature Cell Biology.

[4]  Nick Goldman,et al.  RNAcode: robust discrimination of coding and noncoding regions in comparative sequence data. , 2011, RNA.

[5]  Sébastien Lê,et al.  FactoMineR: An R Package for Multivariate Analysis , 2008 .

[6]  Jennifer Harrow,et al.  High-throughput annotation of full-length long noncoding RNAs with Capture Long-Read Sequencing , 2017, Nature Genetics.

[7]  D. Bartel,et al.  Conserved Function of lincRNAs in Vertebrate Embryonic Development despite Rapid Sequence Evolution , 2011, Cell.

[8]  David Haussler,et al.  The UCSC Genome Browser database: update 2010 , 2009, Nucleic Acids Res..

[9]  Hadley Wickham,et al.  Reshaping Data with the reshape Package , 2007 .

[10]  Anton J. Enright,et al.  Genomic positional conservation identifies topological anchor point RNAs linked to developmental loci , 2018, Genome Biology.

[11]  Michael F. Lin,et al.  Chromatin signature reveals over a thousand highly conserved large non-coding RNAs in mammals , 2009, Nature.

[12]  M. Rosenfeld,et al.  Enhancers as non-coding RNA transcription units: recent insights and future perspectives , 2016, Nature Reviews Genetics.

[13]  Jordan A. Ramilowski,et al.  An atlas of human long non-coding RNAs with accurate 5′ ends , 2017, Nature.

[14]  David R. Kelley,et al.  Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks , 2012, Nature Protocols.

[15]  Michael Morse,et al.  Spatiotemporal expression and transcriptional perturbations by long noncoding RNAs in the mouse brain , 2015, Proceedings of the National Academy of Sciences.

[16]  S. Salzberg,et al.  StringTie enables improved reconstruction of a transcriptome from RNA-seq reads , 2015, Nature Biotechnology.

[17]  J. Kocher,et al.  CPAT: Coding-Potential Assessment Tool using an alignment-free logistic regression model , 2013, Nucleic acids research.

[18]  H. Wickham Simple, Consistent Wrappers for Common String Operations , 2015 .

[19]  T. Mikkelsen,et al.  Cellular source and mechanisms of high transcriptome complexity in the mammalian testis. , 2013, Cell reports.

[20]  Alexander E. Kel,et al.  GTRD: a database of transcription factor binding sites identified by ChIP-seq experiments , 2016, Nucleic Acids Res..

[21]  C. Ponting,et al.  Evolution and Functions of Long Noncoding RNAs , 2009, Cell.

[22]  Cathy H. Wu,et al.  UniProt: the Universal Protein knowledgebase , 2004, Nucleic Acids Res..

[23]  Jun S. Song,et al.  Integration of genome-wide approaches identifies lncRNAs of adult neural stem cells and their progeny in vivo. , 2013, Cell stem cell.

[24]  Marcel E. Dinger,et al.  lncRNAdb v2.0: expanding the reference database for functional long noncoding RNAs , 2014, Nucleic Acids Res..

[25]  D. Bartel,et al.  Conserved Function of lincRNAs in Vertebrate Embryonic Development despite Rapid Sequence Evolution , 2011, Cell.

[26]  Henrik Kaessmann,et al.  Evolutionary dynamics of coding and non-coding transcriptomes , 2014, Nature Reviews Genetics.

[27]  Hadley Wickham,et al.  ggplot2 - Elegant Graphics for Data Analysis (2nd Edition) , 2017 .

[28]  Laurent Duret,et al.  The Xist RNA Gene Evolved in Eutherians by Pseudogenization of a Protein-Coding Gene , 2006, Science.

[29]  D. Bartel,et al.  Principles of long noncoding RNA evolution derived from direct comparison of transcriptomes in 17 species. , 2015, Cell reports.

[30]  J. Rinn,et al.  An Integrated Genome-wide CRISPRa Approach to Functionalize lncRNAs in Drug Resistance , 2018, Cell.

[31]  J. Rinn,et al.  Modular regulatory principles of large non-coding RNAs , 2012, Nature.

[32]  E. Lander,et al.  Local regulation of gene expression by lncRNA promoters, transcription and splicing , 2016, Nature.

[33]  Michael Morse,et al.  Multiple knockout mouse models reveal lincRNAs are required for life and brain development , 2013, eLife.

[34]  Frank Grützner,et al.  The evolution of lncRNA repertoires and expression patterns in tetrapods , 2014, Nature.

[35]  M. Pelizzola,et al.  Integrative classification of human coding and noncoding genes through RNA metabolism profiles , 2016, Nature Structural &Molecular Biology.

[36]  Doron Lancet,et al.  Genome-wide midrange transcription profiles reveal expression level relationships in human tissue specification , 2005, Bioinform..

[37]  Manolis Kellis,et al.  Evolutionary dynamics and tissue specificity of human long noncoding RNAs in six mammals , 2014, Genome research.

[38]  B. Auguié Miscellaneous Functions for "Grid" Graphics , 2015 .

[39]  C. Stoeckert,et al.  OrthoMCL: identification of ortholog groups for eukaryotic genomes. , 2003, Genome research.

[40]  Henrik Kaessmann,et al.  Origins, evolution, and phenotypic impact of new genes. , 2010, Genome research.

[41]  Robert D. Finn,et al.  The Pfam protein families database: towards a more sustainable future , 2015, Nucleic Acids Res..

[42]  David R. Kelley,et al.  Differential gene and transcript expression analysis of RNA-seq experiments with TopHat and Cufflinks , 2012, Nature Protocols.

[43]  Neil D. Lawrence,et al.  Hierarchical Bayesian modelling of gene expression time series across irregularly sampled replicates and clusters , 2013, BMC Bioinformatics.

[44]  R. Irizarry ggplot2 , 2019, Introduction to Data Science.

[45]  Rui Liu,et al.  The lncRNA DEANR1 facilitates human endoderm differentiation by activating FOXA2 expression. , 2015, Cell reports.

[46]  W. Huber,et al.  Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2 , 2014, Genome Biology.

[47]  Paul Theodor Pyl,et al.  HTSeq—a Python framework to work with high-throughput sequencing data , 2014, bioRxiv.

[48]  J. Mendell,et al.  Functional Classification and Experimental Dissection of Long Noncoding RNAs , 2018, Cell.

[49]  J. Baker,et al.  Gene expression across mammalian organ development , 2019, Nature.

[50]  H. Wickham Easily Tidy Data with 'spread()' and 'gather()' Functions , 2016 .

[51]  Terrence S. Furey,et al.  The UCSC Genome Browser Database: update 2006 , 2005, Nucleic Acids Res..

[52]  Mark D. Robinson,et al.  edgeR: a Bioconductor package for differential expression analysis of digital gene expression data , 2009, Bioinform..

[53]  Neil D. Lawrence,et al.  Fast Variational Inference in the Conjugate Exponential Family , 2012, NIPS.

[54]  Astrid Gall,et al.  Ensembl 2018 , 2017, Nucleic Acids Res..

[55]  T. Meehan,et al.  An atlas of active enhancers across human cell types and tissues , 2014, Nature.

[56]  I. Ulitsky,et al.  A subset of conserved mammalian long non-coding RNAs are fossils of ancestral protein-coding genes , 2017, Genome Biology.

[57]  A. Mallamaci,et al.  Regulation of Emx2 Expression by Antisense Transcripts in Murine Cortico-Cerebral Precursors , 2010, PloS one.

[58]  Aaron R. Quinlan,et al.  BIOINFORMATICS APPLICATIONS NOTE , 2022 .

[59]  Ana Conesa,et al.  maSigPro: a Method to Identify Significantly Differential Expression Profiles in Time-Course Microarray Experiments , 2006, Spanish Bioinformatics Conference.

[60]  Howard Y. Chang,et al.  NONCODING RNA: CRISPRi‐based genome‐scale identification of functional long noncoding RNA loci in human cells , 2017 .

[61]  W. Revelle psych: Procedures for Personality and Psychological Research , 2017 .

[62]  Gonçalo R. Abecasis,et al.  The Sequence Alignment/Map format and SAMtools , 2009, Bioinform..

[63]  Cole Trapnell,et al.  Integrative annotation of human large intergenic noncoding RNAs reveals global properties and specific subclasses. , 2011, Genes & development.

[64]  A. Regev,et al.  Evolutionary analysis across mammals reveals distinct classes of long non-coding RNAs , 2015, Genome Biology.

[65]  David G. Knowles,et al.  The GENCODE v7 catalog of human long noncoding RNAs: Analysis of their gene structure, evolution, and expression , 2012, Genome research.

[66]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[67]  E. Olson,et al.  Gene Regulatory Networks in the Evolution and Development of the Heart , 2006, Science.

[68]  G. Felsenfeld,et al.  Insulin promoter in human pancreatic β cells contacts diabetes susceptibility loci and regulates genes affecting insulin metabolism , 2018, Proceedings of the National Academy of Sciences.

[69]  Jing Wang,et al.  WebGestalt 2017: a more comprehensive, powerful, flexible and interactive gene set enrichment analysis toolkit , 2017, Nucleic Acids Res..

[70]  Z. Lu,et al.  Divergent lncRNAs Regulate Gene Expression and Lineage Differentiation in Pluripotent Cells. , 2016, Cell stem cell.

[71]  K. Lindblad-Toh,et al.  FEELnc: a tool for long non-coding RNA annotation and its application to the dog transcriptome , 2017, Nucleic acids research.

[72]  Igor Ulitsky,et al.  Evolution to the rescue: using comparative genomics to understand long non-coding RNAs , 2016, Nature Reviews Genetics.

[73]  Max A. Horlbeck,et al.  Single-cell analysis of long non-coding RNAs in the developing human neocortex , 2016, Genome Biology.

[74]  Chris P. Ponting,et al.  Rapid Turnover of Long Noncoding RNAs and the Evolution of Gene Expression , 2012, PLoS genetics.

[75]  J. Rinn,et al.  Chromatin environment, transcriptional regulation, and splicing distinguish lincRNAs and mRNAs , 2016, bioRxiv.

[76]  Pedro M. Valero-Mora,et al.  ggplot2: Elegant Graphics for Data Analysis , 2010 .

[77]  Neil D. Lawrence,et al.  Fast Nonparametric Clustering of Structured Time-Series , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[78]  B. Herrmann,et al.  Long noncoding RNAs in organogenesis: making the difference. , 2015, Trends in genetics : TIG.

[79]  R Core Team,et al.  R: A language and environment for statistical computing. , 2014 .

[80]  Hadley Wickham,et al.  The Split-Apply-Combine Strategy for Data Analysis , 2011 .

[81]  S. Salzberg,et al.  The Transcriptional Landscape of the Mammalian Genome , 2005, Science.